109 resultados para Plant species diversity
Resumo:
Aim Geographical, climatic and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. The aim of this study was to: (1) characterize patterns of beta diversity in global drylands; (2) detect common environmental drivers of beta diversity; and (3) test for thresholds in environmental conditions driving potential shifts in plant species composition. Location Global. Methods Beta diversity was quantified in 224 dryland plant communities from 22 geographical regions on all continents except Antarctica using four complementary measures: the percentage of singletons (species occurring at only one site); Whittaker's beta diversity, β(W); a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites, β(R2); and a multivariate abundance-based metric, β(MV). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographical, climatic and soil variables. Results Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity percentage of singletons and β(W) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance (β(R2) and β(MV) were more associated with climate variability. Interactions among soil variables, climatic factors and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Main conclusions Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving c. 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate conservation strategies for mitigating effects of climate change on dryland vegetation.
Resumo:
The search for predictions of species diversity across environmental gradients has challenged ecologists for decades. The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate. Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it. Here, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, we provide evidence in support of the HBM pattern at both global and regional extents. The relationships described here provide a foundation for further research into the local, landscape, and historical factors that maintain biodiversity.
Resumo:
1. Positive interactions among plants can increase species richness by relaxing environmental filters and providing more heterogeneous environments. However, it is not known if facilitation could affect coexistence through other mechanisms. Most studies on plant coexistence focus on negative frequency-dependent mechanisms (decreasing the abundance of common species); here, we test if facilitation can enhance coexistence by giving species an advantage when rare. 2. To test our hypothesis, we used a global data set from drylands and alpine environments and measured the intensity of facilitation (based on co-occurrences with nurse plants) for 48 species present in at least 4 different sites and with a range of abundances in the field. We compared these results with the degree of facilitation experienced by species which are globally rare or common (according to the IUCN Red List), and with a larger data base including over 1200 co-occurrences of target species with their nurses. 3. Facilitation was stronger for rare species (i.e. those having lower local abundances or considered endangered by the IUCN) than for common species, and strongly decreased with the abundance of the facilitated species. These results hold after accounting for the distance of each species from its ecological optimum (i.e. the degree of functional stress it experiences). 4. Synthesis. Our results highlight that nurse plants not only increase the number of species able to colonize a given site, but may also promote species coexistence by preventing the local extinction of rare species. Our findings illustrate the role that nurse plants play in conserving endangered species and link the relationship between facilitation and diversity with coexistence theory. As such, they provide further mechanistic understanding on how facilitation maintains plant diversity.
Resumo:
Soil microbial biomass is a key determinant of carbon dynamics in the soil. Several studies have shown that soil microbial biomass significantly increases with plant species diversity, but it remains unclear whether plant species diversity can also stabilize soil microbial biomass in a changing environment. This question is particularly relevant as many global environmental change (GEC) factors, such as drought and nutrient enrichment, have been shown to reduce soil microbial biomass. Experiments with orthogonal manipulations of plant diversity and GEC factors can provide insights whether plant diversity can attenuate such detrimental effects on soil microbial biomass. Here, we present the analysis of 12 different studies with 14 unique orthogonal plant diversity × GEC manipulations in grasslands, where plant diversity and at least one GEC factor (elevated CO2, nutrient enrichment, drought, earthworm presence, or warming) were manipulated. Our results show that higher plant diversity significantly enhances soil microbial biomass with the strongest effects in long-term field experiments. In contrast, GEC factors had inconsistent effects with only drought having a significant negative effect. Importantly, we report consistent non-significant effects for all 14 interactions between plant diversity and GEC factors, which indicates a limited potential of plant diversity to attenuate the effects of GEC factors on soil microbial biomass. We highlight that plant diversity is a major determinant of soil microbial biomass in experimental grasslands that can influence soil carbon dynamics irrespective of GEC.
Resumo:
Genetic diversity in plant populations has been shown to affect the species diversity of insects. In grasses, infection with fungal endophytes can also have strong effects on insects, potentially modifying the effects of plant genetic diversity. We manipulated the genetic diversity and endophyte infection of a grass in a field experiment. We show that diversity of primary parasitoids (3rd trophic level) and, especially, secondary parasitoids (4th trophic level) increases with grass genetic diversity while there was no effect of endophyte infection. The increase in insect diversity appeared to be due to a complementarity effect rather than a sampling effect. The higher parasitoid diversity could not be explained by a cascading diversity effect because herbivore diversity was not affected and the same herbivore species were present in all treatments. The effects on the higher trophic levels must therefore be due to a direct response to plant traits or mediated by effects on traits at intermediate trophic levels.