88 resultados para Plant ecology--Ontario--Backus Woods.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims Phenotypic optimality models neglect genetics. However, especially when heterozygous genotypes ire fittest, evolving allele, genotype and phenotype frequencies may not correspond to predicted optima. This was not previously addressed for organisms with complex life histories. Methods Therefore, we modelled the evolution of a fitness-relevant trait of clonal plants, stolon internode length. We explored the likely case of air asymmetric unimodal fitness profile with three model types. In constant selection models (CSMs), which are gametic, but not spatially explicit, evolving allele frequencies in the one-locus and five-loci cases did not correspond to optimum stolon internode length predicted by the spatially explicit, but not gametic, phenotypic model. This deviation was due to the asymmetry of the fitness profile. Gametic, spatially explicit individual-based (SEIB) modeling allowed us relaxing the CSM assumptions of constant selection with exclusively sexual reproduction. Important findings For entirely vegetative or sexual reproduction, predictions. of the gametic SEIB model were close to the ones of spatially explicit CSMs gametic phenotypic models, hut for mixed modes of reproduction they appoximated those of gametic, not spatially explicit CSMs. Thus, in contrast to gametic SEIB models, phenotypic models and, especially for few loci, also CSMs can be very misleading. We conclude that the evolution of trails governed by few quantitative trait loci appears hardly predictable by simple models, that genetic algorithms aiming at technical optimization may actually, miss the optimum and that selection may lead to loci with smaller effects, in derived compared with ancestral lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims Floral traits are frequency used in traditional plant systematics because Of their assumed constancy. One potential reason for the apparent constancy of flower size is that effective pollen transfer between flowers depends oil the accuracy of the physical fit between the flower and pollinator. Therefore, dowels are likely to he under stronger stabilizing selection for uniform size than vegetative plant parts. Moreover, as predicted by the pollinator-mediated stabilizing selection (PMSS) hypothesis, all accurate fit between flowers and their pollinators is likely to he more important for specialized pollination systems as found in many species with bilaterally symmetric (zygomorphic) flowers than for species, with radially symmetric (actinomorphic) flowers. Methods In a comparative study of 15 zygomorphic and 13 actinomorphic species ill Switzerland, we tested whether variation in flower size, among and within individuals, is smaller than variation ill leaf size and whether variation in flower size is smaller ill zygomorphic compared to actinomorphic species. Important findings Indeed, variation ill leaf length was significantly larger than variation in flower length and width. Within-individual variation ill flower and leaf sizes did not differ significantly between zygomorphic and actinomorphic species. In line with the predictions of the PMSS, among-individual variation ill flower length and flower width was significantly smaller for zygomorphic species than for actinomorphic species, while the two groups did not differ in leaf length variation. This suggests that plants with zygomorphic flowers have undergone stronger selection for uniform flowers than plants with actinomorphic flowers. This supports that the uniformity of flowers compared to vegetative structures within species, as already observed in traditional plant systematics, is, at least in part, a consequence of the requirement for effective pollination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of aseasonal lowland dipterocarp forest in Borneo is influenced by perturbation from droughts. These events might be increasing in frequency and intensity in the future. This paper describes drought-affected dynamics between 1986 and 2001 in Sabah, Malaysia, and considers how it is possible, reliably and accurately, to measure both coarse- and fine-scale responses of the forest. Some fundamental concerns about methodology and data analysis emerge. In two plots forming 8 ha, mortality, recruitment, and stem growth rates of trees ≥10 cm gbh (girth at breast height) were measured in a ‘pre-drought’ period (1986–1996), and in a period (1996–2001) including the 1997–1998 ENSO-drought. For 2.56 ha of subplots, mortality and growth rates of small trees (10–<50 cm gbh) were found also for two sub-periods (1996–1999, 1999–2001). A total of c. 19 K trees were recorded. Mortality rate increased by 25% while both recruitment and relative growth rates increased by 12% for all trees at the coarse scale. For small trees, at the fine scale, mortality increased by 6% and 9% from pre-drought to drought and on to ‘post-drought’ sub-periods. Relative growth rates correspondingly decreased by 38% and increased by 98%. Tree size and topography interacted in a complex manner with between-plot differences. The forest appears to have been sustained by off-setting elevated tree mortality by highly resilient stem growth. This last is seen as the key integrating tree variable which links the external driver (drought causing water stress) and population dynamics recorded as mortality and recruitment. Suitably sound measurements of stem girth, leading to valid growth rates, are needed to understand and model tree dynamic responses to perturbations. The proportion of sound data, however, is in part determined by the drought itself.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drought perturbation driven by the El Niño Southern Oscillation (ENSO) is a principal stochastic variable determining the dynamics of lowland rain forest in S.E. Asia. Mortality, recruitment and stem growth rates at Danum in Sabah (Malaysian Borneo) were recorded in two 4-ha plots (trees ≥ 10 cm gbh) for two periods, 1986–1996 and 1996–2001. Mortality and growth were also recorded in a sample of subplots for small trees (10 to <50 cm gbh) in two sub-periods, 1996–1999 and 1999–2001. Dynamics variables were employed to build indices of drought response for each of the 34 most abundant plot-level species (22 at the subplot level), these being interval-weighted percentage changes between periods and sub-periods. A significant yet complex effect of the strong 1997/1998 drought at the forest community level was shown by randomization procedures followed by multiple hypothesis testing. Despite a general resistance of the forest to drought, large and significant differences in short-term responses were apparent for several species. Using a diagrammatic form of stability analysis, different species showed immediate or lagged effects, high or low degrees of resilience or even oscillatory dynamics. In the context of the local topographic gradient, species’ responses define the newly termed perturbation response niche. The largest responses, particularly for recruitment and growth, were among the small trees, many of which are members of understorey taxa. The results bring with them a novel approach to understanding community dynamics: the kaleidoscopic complexity of idiosyncratic responses to stochastic perturbations suggests that plurality, rather than neutrality, of responses may be essential to understanding these tropical forests. The basis to the various responses lies with the mechanisms of tree-soil water relations which are physiologically predictable: the timing and intensity of the next drought, however, is not. To date, environmental stochasticity has been insufficiently incorporated into models of tropical forest dynamics, a step that might considerably improve the reality of theories about these globally important ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the current advances in functional biodiversity research is the move away from short-lived test systems towards the exploration of diversity-ecosystem functioning relationships in structurally more complex ecosystems. In forests, assumptions about the functional significance of tree species diversity have only recently produced a new generation of research on ecosystem processes and services. Novel experimental designs have now replaced traditional forestry trials, but these comparatively young experimental plots suffer from specific difficulties that are mainly related to the tree size and longevity. Tree species diversity experiments therefore need to be complemented with comparative observational studies in existing forests. Here we present the design and implementation of a new network of forest plots along tree species diversity gradients in six major European forest types: the FunDivEUROPE Exploratory Platform. Based on a review of the deficiencies of existing observational approaches and of unresolved research questions and hypotheses, we discuss the fundamental criteria that shaped the design of our platform. Key features include the extent of the species diversity gradient with mixtures up to five species, strict avoidance of a dilution gradient, special attention to community evenness and minimal covariation with other environmental factors. The new European research platform permits the most comprehensive assessment of tree species diversity effects on forest ecosystem functioning to date since it offers a common set of research plots to groups of researchers from very different disciplines and uses the same methodological approach in contrasting forest types along an extensive environmental gradient. (C) 2013 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water relations of two tree species in the Euphorbiaceae were compared to test in part a hypothesis that the forest understorey plays an integral role in drought response. At Danum, Sabah, the relatively common species Dimorphocalyx muricatus is associated with ridges whilst another species, Mallotus wrayi, occurs widely both on ridges and lower slopes. Sets of subplots within two 4 -ha permanent plots in this lowland dipterocarp rain forest, were positioned on ridges and lower slopes. Soil water potentials were recorded in 1995-1997, and leaf water potentials were measured on six occasions. Soil water potentials on the ridges (-0.047 MPa) were significantly lower than on the lower slopes (-0.012 MPa), but during the driest period in May 1997 they fell to similarly low levels on both sites (-0.53 MPa). A weighted 40-day accumulated rainfall index was developed to model the soil water potentials. At dry times, D. muricatus (ridge) had significantly higher pre-dawn (-0.21 v. -0.57 MPa) and mid-day (-0.59 v. -1.77 MPa) leaf water potentials than M. wrayi (mean of ridge and lower slope). Leaf osmotic potentials of M. wrayi on the ridges were lower (-1.63 MPa) than on lower slopes (-1.09 MPa), with those for D. muricatus being intermediate (-1.29 MPa): both species adjusted osmotically between wet and dry times. D. muricatus trees were more deeply rooted than M. wrayi trees (97 v. 70 cm). M. wrayi trees had greater lateral root cross-sectional areas than D. muricatus trees although a greater proportion of this sectional area for D. muricatus was further down the soil profile. D. muricatus appeared to maintain relatively high water potentials during dry periods because of its access to deeper water supplies and thus it largely avoided drought effects, but M. wrayi seemed to be more affected yet tolerant of drought and was more plastic in its response. The interaction between water availability and topography determines these species' distributions and provides insights into how rain forests can withstand occasional strong droughts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the southern part of Korup National Park, Cameroon, the mast fruiting tree Microberlinia bisulcata occurs as a codominant in groves of ectomycorrhizal Caesalpiniaceae within a mosaic of otherwise species-rich lowland rain forest. To estimate the amount of carbon and nutrients invested in reproduction during a mast fruiting event, and the consequential seed and seedling survival, three related field studies were made in 1995. These provided a complete seed and seedling budget for the cohort. Seed production was estimated by counting woody pods on the forest floor. Trees produced on average 26,000 (range 0-92,000) seeds/tree, with a dry mass of 16.6 kg/tree. Seeds were contained in woody pods of mass 307 kg/tree. Dry mass production of pods and seeds was 1034 kg ha(-1), equivalent to over half (55%) of annual leaf litterfall for this species, and contained 13% of the nitrogen and 21% of the phosphorus in annual leaf litterfall. Seed and young-seedling mortality was investigated with open quadrats and cages to exclude vertebrate predators, at two distances from the parent tree. The proportion of seeds on the forest floor which disappeared in the first 6 wk after dispersal was 84%, of which 26.5% was due to likely vertebrate removal, 36% to rotting, and 21.5% to other causes. Vertebrate predation was greater close to the stem than 5 m beyond the crown (41 vs 12% of seeds disappearing) where the seed shadow was less dense. Previous studies have demonstrated an association between mast years at Korup and high dry-season radiation before flowering, and have shown lower leaf-litterfall phosphorus concentrations following mast fruiting. The emerging hypothesis is that mast fruiting is primarily imposed by energy limitation for fruit production, but phosphorus supply and vertebrate predation are regulating factors. Recording the survival of naturally-regenerating M. bisulcata seedlings (6-wk stage) showed that 21% of seedlings survived to 31 mo. A simple three-stage recruitment model was constructed. Mortality rates were initially high and peaked again in each of the next two dry seasons, with smaller peaks in the two intervening wet seasons, these latter coinciding with annual troughs in radiation. The very poor recruitment of M. bisulcata trees in Korup, demonstrated in previous investigations, appears not to be due to a limitation in seed or young-seedling supply, but rather by factors operating at the established-seedling stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims and Methods Disturbance is supposed to play an important role for biodiversity and ecosystem stability as described by the intermediate disturbance hypothesis (IDH), which predicts highest species richness at intermediate levels of disturbances. In this study, we tested the effects of artificial soil disturbances on diversity of annual and perennial vascular plants and bryophytes in a field experiment in 86 agricultural grasslands differing in land use in two regions of Germany. On each grassland, we implemented four treatments: three treatments differing in application time of soil disturbances and one control. One year after experimental disturbance, we recorded vegetation and measured biomass productivity and bare ground. We analysed the disturbance response taking effects of region and land-use-accompanied disturbance regimes into account.Important Findings Region and land-use type strongly determined plant species richness. Experimental disturbances had small positive effects on the species richness of annuals, but none on perennials or bryophytes. Bare ground was positively related to species richness of bryophytes. However, exceeding the creation of 12% bare ground further disturbance had a detrimental effect on bryophyte species richness, which corresponds to the IDH. As biomass productivity was unaffected by disturbance our results indicate that the disturbance effect on species richness of annuals was not due to decreased overall productivity, but rather due to short-term lowered inter- and intraspecific competition at the newly created microsites.Generally, our results highlight the importance of soil disturbances for species richness of annual plants and bryophytes in agricultural grasslands. However, most grasslands were disturbed naturally or by land-use practices and our additional experimental soil disturbances only had a small short-term effect. Overall, total plant diversity in grasslands seemed to be more limited by the availability of propagules rather than by suitable microsites for germination. Thus, nature conservation efforts to increase grassland diversity should focus on overcoming propagule limitation, for instance by additional sowing of seeds, while the creation of additional open patches by disturbance might only be appropriate where natural disturbances are scarce.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims The biochemical defense of lichens against herbivores and its relationship to lichen frequency are poorly understood. Therefore, we tested whether chemical compounds in lichens act as feeding defense or rather as stimulus for snail herbivory among lichens and whether experimental feeding by snails is related to lichen frequency in the field. Methods In a no-choice feeding experiment, we fed 24 lichen species to snails of two taxa from the Clausilidae and Enidae families and compared untreated lichens and lichens with compounds removed by acetone rinsing. Then, we related experimental lichen consumption with the frequency of lichen species among 158 forest plots in the field (Schwäbische Alb, Germany), where we had also sampled snail and lichen species. Important findings In five lichen species, snails preferred treated samples over untreated controls, indicating chemical feeding defense, and vice versa in two species, indicating chemical feeding stimulus. Interestingly, compared with less frequent lichen species, snails consumed more of untreated and less of treated samples of more frequent lichen species. Removing one outlier species resulted in the loss of a significant positive relationship when untreated samples were analyzed separately. However, the interaction between treatment and lichen frequency remained significant when excluding single species or including snail genus instead of taxa, indicating that our results were robust and that lumping the species to two taxa was justified. Our results imply lichen-feeding snails to prefer frequent lichens and avoid less frequent ones because of secondary compound recognition. This supports the idea that consumers adapt to the most abundant food source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endozoochory is an important dispersal mechanism for seed plants and has recently been demonstrated to occur also in spore plants, such as ferns, which are commonly consumed by herbivores. However, it is not known whether fern species from particular habitats are differentially preferred by herbivores and whether their spores differ in their ability to survive the gut passage of herbivores. Such differences would suggest adaptation to endozoochorous dispersal, as it is known for seed plants. Moreover, it is unclear whether herbivore species differ in their efficiency to disperse fern spores. In a factorial experiment, we fed fertile leaflets of 13 fern species from different forest and open habitats to three polyphagous herbivore species and recorded the germination of spores from feces after 46 and 81 days. Fern spores germinated in 66 % of all samples after 46 days. At this stage, germination success differed among fern and herbivore species, but was independent of the ferns’ habitat. Interestingly, after 81 days fern spores germinated in 85 % of all samples and earlier significant differences in germination success among fern and herbivore species were not sustained. The overall high germination success and the absence of differences among fern species from different habitats together with the consistency across three tested herbivores strongly imply endozoochorous dispersal to be a taxonomically widespread phenomenon among fern-eating herbivores, which all might act as potential dispersal vectors. © 2015, Springer Science+Business Media Dordrecht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intraspecific and interspecific architectural patterns were studied for eight tree species of a Bornean rain forest. Trees 5--19 m tall in two 4-ha permanent sample plots in primary forest were selected, and three light descriptors and seven architectural traits for each tree were measured. Two general predictions were made: (1) Slow growing individuals (or short ones) encounter lower light, and have flatter crowns, fewer leaf layers, and thinner stems, than do fast growing individuals (or tall ones). (2) Species with higher shade-tolerance receive less light and have flatter crowns, fewer leaf layers, and thinner stems, than do species with lower shade-tolerance. Shade-tolerance is assumed to decrease with maximum growth rate, mortality rate, and adult stature of a species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Characterization of spatial and temporal variation in grassland productivity and nutrition is crucial for a comprehensive understanding of ecosystem function. Although within-site heterogeneity in soil and plant properties has been shown to be relevant for plant community stability, spatiotemporal variability in these factors is still understudied in temperate grasslands. Our study aimed to detect if soil characteristics and plant diversity could explain observed small-scale spatial and temporal variability in grassland productivity, biomass nutrient concentrations, and nutrient limitation. Therefore, we sampled 360 plots of 20 cm × 20 cm each at six consecutive dates in an unfertilized grassland in Southern Germany. Nutrient limitation was estimated using nutrient ratios in plant biomass. Absolute values of, and spatial variability in, productivity, biomass nutrient concentrations, and nutrient limitation were strongly associated with sampling date. In April, spatial heterogeneity was high and most plots showed phosphorous deficiency, while later in the season nitrogen was the major limiting nutrient. Additionally, a small significant positive association between plant diversity and biomass phosphorus concentrations was observed, but should be tested in more detail. We discuss how low biological activity e.g., of soil microbial organisms might have influenced observed heterogeneity of plant nutrition in early spring in combination with reduced active acquisition of soil resources by plants. These early-season conditions are particularly relevant for future studies as they differ substantially from more thoroughly studied later season conditions. Our study underlines the importance of considering small spatial scales and temporal variability to better elucidate mechanisms of ecosystem functioning and plant community assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical models predict lognormal species abundance distributions (SADs) in stable and productive environments, with log-series SADs in less stable, dispersal driven communities. We studied patterns of relative species abundances of perennial vascular plants in global dryland communities to: (i) assess the influence of climatic and soil characteristics on the observed SADs, (ii) infer how environmental variability influences relative abundances, and (iii) evaluate how colonisation dynamics and environmental filters shape abundance distributions. We fitted lognormal and log-series SADs to 91 sites containing at least 15 species of perennial vascular plants. The dependence of species relative abundances on soil and climate variables was assessed using general linear models. Irrespective of habitat type and latitude, the majority of the SADs (70.3%) were best described by a lognormal distribution. Lognormal SADs were associated with low annual precipitation, higher aridity, high soil carbon content, and higher variability of climate variables and soil nitrate. Our results do not corroborate models predicting the prevalence of log-series SADs in dryland communities. As lognormal SADs were particularly associated with sites with drier conditions and a higher environmental variability, we reject models linking lognormality to environmental stability and high productivity conditions. Instead our results point to the prevalence of lognormal SADs in heterogeneous environments, allowing for more evenly distributed plant communities, or in stressful ecosystems, which are generally shaped by strong habitat filters and limited colonisation. This suggests that drylands may be resilient to environmental changes because the many species with intermediate relative abundances could take over ecosystem functioning if the environment becomes suboptimal for dominant species.