29 resultados para Phenol hydroxylation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear receptors (NR), such as constitutive androstane receptor (CAR), pregnane X receptor (PXR) and peroxisome proliferator-associated receptors alpha and gamma (PPARalpha, PPARgamma) are mediators of inflammation and may be involved in inflammatory bowel disease (IBD) and food responsive diarrhea (FRD) of dogs. The present study compared mRNA abundance of NR and NR target genes [multi drug-resistance gene-1 (MDR1), multiple drug-resistance-associated proteins (MRD2, MRD3), cytochrome P450 (CYP3A12), phenol-sulfating phenol sulfotransferase (SULT1A1) and glutathione-S-transferase (GST A3-3)] in biopsies obtained from duodenum and colon of dogs with IBD and FRD and healthy control dogs (CON; n=7 per group). Upon first presentation of dogs, mRNA levels of PPARalpha, PPARgamma, CAR, PXR and RXRalpha in duodenum as well as PPARgamma, CAR, PXR and RXRalpha in colon were not different among groups (P>0.10). Although mRNA abundance of PPARalpha in colon of dogs with FRD was similar in both IBD and CON (P>0.10), PPARalpha mRNA abundance was higher in IBD than CON (P<0.05). Levels of mRNA of MDR1 in duodenum were higher in FRD than IBD (P<0.05) or CON (P<0.001). Compared with CON, abundances of mRNA for MRP2, CYP3A12 and SULT1A1 were higher in both FRD and IBD than CON (P<0.05). Differences in mRNA levels of PPARalpha and MRP2 in colon and MDR1, MRP2, CYP3A12 and SULT1A1 in duodenum may be indicative for enteropathy in FRD and (or) IBD dogs relative to healthy dogs. More importantly, increased expression of MDR1 in FRD relative to IBD in duodenum may be a useful diagnostic marker to distinguish dogs with FRD from dogs with IBD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear receptors (NR) are ligand-activated transcription factors that regulate different metabolic pathways by influencing the expression of target genes. The current study examined mRNA abundance of NR and NR target genes at different sites of the gastrointestinal tract (GIT) and the liver of healthy dogs (Beagles; n = 11). Samples of GIT and liver were collected postmortem and homogenized, total RNA was extracted and reverse transcribed, and gene expression was quantified by real-time reverse-transcription PCR relative to the mean of 3 housekeeping genes (beta-actin, glyceraldehyde-3-phosphate dehydrogenase, and ubi-quitin). Differences were observed (P < or = 0.05) in the mRNA abundance among stomach (St), duodenum (Du), jejunum (Je), ileum (Il), and colon (Col) for NR [pregnane X receptor (Du, Je > Il, Col > St), peroxisome proliferator-associated receptor gamma (St, Du, Col > Je, Il), constitutive androstane receptor (Je, Du > Il, Col), and retinoid x receptor alpha (Du > Il)] and NR target genes [glutathione-S-transferase A3-3 (Du > Je > St, Il; St > Col), phenol-sulfating phenol sulfotransferase 1A1 (Du, Je > Il, St; Col > St), cytochrome P450 3A12 (Du, Je > St, Il, Col), multiple drug resistance gene 1 (Du, Je, Il, Col > St), multiple drug resistance-associated protein 2 (Je, Du > Il > St, Col), multiple drug resistance-associated protein 3 (Col > St > Il; Du > Je, Il; St > Il), NR corepressor 2 (St > Il, Col), and cytochrome P450 reductase (St, Du, Je > Il, Col)], but not for peroxisome proliferator-associated receptor alpha. Differences (P > 0.05) in mRNA abundance in the liver relative to the GIT were also observed. In conclusion, the presence of numerous differences in expression of NR and NR target genes in different parts of the GIT and in liver of healthy dogs may be associated with location-specific functions and regulation of GIT regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(-)-Menthol, a monoterpene from Mentha species (Lamiaceae), has been shown to inhibit bone resorption in vivo by an unknown mechanism. In the present study, plasma and urine profiling in rats determined by GC/MS demonstrate that (-)-menthol is extensively metabolized, mainly by hydroxylation and carboxylation, and excreted in the urine, in part as glucuronides. In plasma, very low concentrations of (-)-menthol metabolites were detected after a single dose of (-)-menthol, whereas after repeated treatment, several times higher concentrations and long residence times were measured. In contrast, the elimination of unchanged (-)-menthol was increased by repeated treatment. (-)-Menthol, at concentrations found in plasma, did not inhibit bone resorption in cultured mouse calvaria (skull). However, the neutral metabolites of (-)-menthol, extracted from urine of rats fed with (-)-menthol, inhibited bone resorption in vitro, the concentrations being at plasma level or higher. These results suggest that not (-)-menthol itself, but one or several of its neutral metabolites inhibit the bone resorbing cells in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An extracellular peroxygenase of Agrocybe aegerita catalyzed the H(2)O(2)-dependent hydroxylation of the multi-function beta-adrenergic blocker propranolol (1-naphthalen-1-yloxy-3-(propan-2-ylamino)propan-2-ol) and the non-steroidal anti-inflammatory drug diclofenac (2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid) to give the human drug metabolites 5-hydroxypropranolol (5-OHP) and 4'-hydroxydiclofenac (4'-OHD). The reactions proceeded regioselectively with high isomeric purity and gave the desired 5-OHP and 4'-OHD in yields up to 20% and 65%, respectively. (18)O-labeling experiments showed that the phenolic hydroxyl groups in 5-OHP and 4'-OHD originated from H(2)O(2), which establishes that the reaction is mechanistically a peroxygenation. Our results raise the possibility that fungal peroxygenases may be useful for versatile, cost-effective, and scalable syntheses of drug metabolites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: The antiretroviral drug efavirenz (EFV) is extensively metabolized into three primary metabolites: 8-hydroxy-EFV, 7-hydroxy-EFV and N-glucuronide-EFV. There is a wide interindividual variability in EFV plasma exposure, explained to a great extent by cytochrome P450 2B6 (CYP2B6), the main isoenzyme responsible for EFV metabolism and involved in the major metabolic pathway (8-hydroxylation) and to a lesser extent in 7-hydroxylation. When CYP2B6 function is impaired, the relevance of CYP2A6, the main isoenzyme responsible for 7-hydroxylation may increase. We hypothesize that genetic variability in this gene may contribute to the particularly high, unexplained variability in EFV exposure in individuals with limited CYP2B6 function. METHODS: This study characterized CYP2A6 variation (14 alleles) in individuals (N=169) previously characterized for functional variants in CYP2B6 (18 alleles). Plasma concentrations of EFV and its primary metabolites (8-hydroxy-EFV, 7-hydroxy-EFV and N-glucuronide-EFV) were measured in different genetic backgrounds in vivo. RESULTS: The accessory metabolic pathway CYP2A6 has a critical role in limiting drug accumulation in individuals characterized as CYP2B6 slow metabolizers. CONCLUSION: Dual CYP2B6 and CYP2A6 slow metabolism occurs at significant frequency in various human populations, leading to extremely high EFV exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytochrome P450c17 catalyzes 17 alpha-hydroxylation needed for cortisol synthesis and 17,20 lyase activity needed to produce sex steroids. Serine phosphorylation of P450c17 specifically increases 17,20 lyase activity, but the physiological factors regulating this effect remain unknown. Treating human adrenal NCI-H295A cells with the phosphatase inhibitors okadaic acid, fostriecin, and cantharidin increased 17,20 lyase activity, suggesting involvement of protein phosphatase 2A (PP2A) or 4 (PP4). PP2A but not PP4 inhibited 17,20 lyase activity in microsomes from cultured cells, but neither affected 17 alpha-hydroxylation. Inhibition of 17,20 lyase activity by PP2A was concentration-dependent, could be inhibited by okadaic acid, and was restored by endogenous protein kinases. PP2A but not PP4 coimmunoprecipitated with P450c17, and suppression of PP2A by small interfering RNA increased 17,20 lyase activity. Phosphoprotein SET found in adrenals inhibited PP2A, but not PP4, and fostered 17,20 lyase activity. The identification of PP2A and SET as post-translational regulators of androgen biosynthesis suggests potential additional mechanisms contributing to adrenarche and hyperandrogenic disorders such as polycystic ovary syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the contribution of estrogen receptors (ERs) alpha and beta for epicardial coronary artery function, vascular NO bioactivity, and superoxide (O(2)(-)) formation. Porcine coronary rings were suspended in organ chambers and precontracted with prostaglandin F(2alpha) to determine direct effects of the selective ER agonists 4,4',4''-(4-propyl-[(1)H]pyrazole-1,3,5-triyl)tris-phenol (PPT) or 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) or the nonselective ER agonist 17beta-estradiol. Indirect effects on contractility to U46619 and relaxation to bradykinin were assessed and effects on NO, nitrite, and O(2)(-) formation were measured in cultured cells. Within 5 minutes, selective ERalpha activation by PPT, but not 17beta-estradiol or the ERbeta agonist DPN, caused rapid, NO-dependent, and endothelium-dependent relaxation (49+/-5%; P<0.001 versus ethanol). PPT also caused sustained endothelium- and NO-independent vasodilation similar to 17beta-estradiol after 60 minutes (72+/-3%; P<0.001 versus ethanol). DPN induced endothelium-dependent NO-independent relaxation via endothelium-dependent hyperpolarization (40+/-4%; P<0.01 versus ethanol). 17beta-Estradiol and PPT, but not DPN, attenuated the responses to U46619 and bradykinin. All of the ER agonists increased NO and nitrite formation in vascular endothelial but not smooth muscle cells and attenuated vascular smooth muscle cell O(2)(-) formation (P<0.001). ERalpha activation had the most potent effects on both nitrite formation and inhibiting O(2)(-) (P<0.05). These data demonstrate novel and differential mechanisms by which ERalpha and ERbeta activation control coronary artery vasoreactivity in males and females and regulate vascular NO and O(2)(-) formation. The findings indicate that coronary vascular effects of sex hormones differ with regard to affinity to ERalpha and ERbeta, which will contribute to beneficial and adverse effects of hormone replacement therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2-Methiopropamine [1-(thiophen-2-yl)-2-methylaminopropane, 2-MPA], a thiophene analogue of methamphetamine, is available from online vendors selling "Research chemicals." The first samples were seized by the German police in 2011. As it is a recreational stimulant, its inclusion in routine drug screening protocols should be required. The aims of this study were to identify the phase I and II metabolites of 2-MPA in rat and human urine and to identify the human cytochrome-P450 (CYP) isoenzymes involved in its phase I metabolism. In addition, the detectability of 2-MPA in urine samples using the authors' well-established gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-linear ion trap-mass spectrometry (LC-MS(n)) screening protocols was also evaluated. The metabolites were isolated from rat and human urine samples by solid-Phase extraction without or following enzymatic cleavage of conjugates. The phase I metabolites, following acetylation, were separated and identified by GC-MS and/or liquid chromatography-high-resolution linear ion trap mass spectrometry (LC-HR-MS(n)) and the phase II metabolites by LC-HR-MS(n). The following Major metabolic pathways were proposed: N-demethylation, hydroxylation at the side chain and at the thiophene ring, and combination of these transformations followed by glucuronidation and/or sulfation. CYP1A2, CYP2C19, CYP2D6, and CYP3A4 were identified as the major phase I metabolizing enzymes. They were also involved in the N-demethylation of the analogue methamphetamine and CYP2C19, CYP2D6, and CYP3A4 in its ring hydroxylation. Following the administration of a typical user's dose, 2-MPA and its metabolites were identified in rat urine using the authors' GC-MS and the LC-MS(n) screening approaches. Ingestion of 2-MPA could also be detected by both protocols in an authentic human urine sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytochrome P450c17 catalyzes both 17alpha-hydroxylation and 17,20-lyase conversion of 21-carbon steroids to 19-carbon precursors of sex steroids. P450c17 can mediate testosterone biosynthesis via the conversion of pregnenolone to dehydroepiandrosterone (the delta(5) pathway) or via conversion of progesterone to androstenedione (the delta(4) pathway). In many species, the 17, 20-lyase activity of P450c17 for one pathway dominates, reflecting the preferred steroidogenic pathway of that species. All studies of recombinant human P450c17 and of human adrenal microsomes have found high 17, 20-lyase activity only in the delta(5) pathway. Because the 17, 20-lyase activities in both the delta(4) and delta(5) pathways for testicular P450c17 have not been directly compared, however, it is not known if the delta(5) pathway dominates in the human testis. To resolve this issue, we assayed the conversion of 17alpha-hydroxypregnenolone to dehydroepiandrosterone (delta(5) 17, 20-lyase activity) and of 17alpha-hydroxyprogesterone to androstenedione (delta(4) 17, 20-lyase activity) by human fetal testicular microsomes. We obtained apparent Michaelis constant (K(m)) and maximum velocity (V(max)) values of 1.0 microM and 0.73 pmol.min(-1). microg(-1) for delta(5) 17, 20-lyase activity and of 3.5 microM and 0.23 pmol.min(-1). microg(-1) for delta(4) 17, 20-lyase activity. Catalytic efficiencies, expressed as the ratio V(max)/K(m), were 0.73 and 0.066 for the delta(5) and delta(4) reactions, respectively, indicating 11-fold higher preference for the delta(5) pathway. We conclude that the majority of testosterone biosynthesis in the human testis proceeds through the conversion of pregnenolone to dehydroepiandrosterone via the delta(5) pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Testosterone (TES) 6-β-hydroxylation is a significant metabolic step in the biotransformation of TES in human liver microsomes and reflects cytochrome P450 (CYP) 3A4/5 specific metabolic activity. Several CYP3A enzymes have been annotated in the horse genome, but functional characterization is missing. This descriptive study investigates TES metabolism in the horse liver in vitro and the qualitative contribution of three CYP3A isoforms of the horse. Metabolism of TES was investigated by using equine hepatocyte primary cultures and liver microsomes. Chemical inhibitors were used to determine the CYPs involved in TES biotransformation in equine microsomes. Single CYPs 3A89, 3A94, and 3A95, recombinantly expressed in V79 hamster lung fibroblasts, were incubated with TES and the fluorescent metabolite 7-benzyloxy-4-trifluoromethylcoumarin (BFC). The effect of ketoconazole and troleandomycin was evaluated on single CYPs. Testosterone metabolites were analyzed by HPLC and confirmed by GC/MS. In hepatocyte primary cultures, the most abundant metabolite was androstenedione (AS), whereas in liver microsomes, 6-β-hydroxytestosterone showed the largest peak. Formation of 6-β-hydroxytestosterone and 11-β-hydroxytestosterone in liver microsomes was inhibited by ketoconazole, troleandomycin, and quercetin. Equine recombinant CYP3A95 catalyzed 11-β-hydroxylation of testosterone (TES). Metabolism of BFC was significantly inhibited by ketoconazole in CYP3A95, whereas troleandomycin affected the activities of CYP3A94 and CYP3A95. Both inhibitors had no significant effect on CYP3A89. Metabolic reactions and effects of inhibitors differed between the equine CYP3A isoforms investigated. This has to be considered in future in vitro studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measured rates of intrinsic clearance determined using cryopreserved trout hepatocytes can be extrapolated to the whole animal as a means of improving modeled bioaccumulation predictions for fish. To date, however, the intra- and interlaboratory reliability of this procedure has not been determined. In the present study, three laboratories determined in vitro intrinsic clearance of six reference compounds (benzo[a]pyrene, 4-nonylphenol, di-tert-butyl phenol, fenthion, methoxychlor and o-terphenyl) by conducting substrate depletion experiments with cryopreserved trout hepatocytes from a single source. O-terphenyl was excluded from the final analysis due to nonfirst-order depletion kinetics and significant loss from denatured controls. For the other five compounds, intralaboratory variability (% CV) in measured in vitro intrinsic clearance values ranged from 4.1 to 30%, while interlaboratory variability ranged from 27 to 61%. Predicted bioconcentration factors based on in vitro clearance values exhibited a reduced level of interlaboratory variability (5.3-38% CV). The results of this study demonstrate that cryopreserved trout hepatocytes can be used to reliably obtain in vitro intrinsic clearance of xenobiotics, which provides support for the application of this in vitro method in a weight-of-evidence approach to chemical bioaccumulation assessment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human bone is the most direct source for reconstructing health and living conditions of ancient populations. However, many diseases remain undetected in palaeopathology. Möller-Barlow disease (scurvy) is a historically well-documented metabolic disease and must have been common in clinical and sub-clinical severity. Due to long incubation periods and the subtle nature of bone changes osteological evidence is relatively rare (Brickley & Ives 2008). Möller-Barlow disease is caused by deficiency of dietary vitamin C (ascorbic acid) and evokes symptoms like fatigue, haemorrhage, inflammations, delayed wound healing and pain. Vitamin C is a cofactor for the hydroxylation of the amino acids proline and lysine which are essential for the production of intact connective tissue by cross-linking the propeptides in collagen. In a preliminary study we tested the detectability of Möller-Barlow disease by analysis of relative quantitative variability of hydroxylated amino acids in collagen (Pendery & Koon 2013). Samples (N=9) were taken from children with (n=3, cranium, femur, tibia) and without (n=4, cranium, femur, tibia) apparent bone reactions indicative of Möller-Barlow disease, as well as from adults with lethal traumata (n=2; negative controls). The skeletal remains originated from two early medieval cemeteries from Switzerland. Gas chromatographic (GC) analysis revealed minor differences between the samples. So far children with no pathologic alterations had fairly same values as negative controls while children with bone reactions paradoxically exhibited even slightly higher values of hydroxyproline and hydroxylysine. Future research demands for larger sample size and has to discuss sampling strategies. Beside possible misdiagnosis of Möller-Barlow disease it is arguable if only the newly built bone should be analysed even though this could lead to problems related to small sample quantity. It also remains to be seen to which extent varying turnover rates of different skeletal elements, especially in children, must be taken into account.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Testosterone hydroxylation was investigated in human, canine and equine liver microsomes and in human and canine single CYPs. The contribution of the CYP families 1, 2 and 3 was studied using chemical inhibitors. Testosterone metabolites were analyzed by HPLC. The metabolites androstenedione, 6β- and 11β-hydroxytestosterone were found in microsomes of all species, but the pattern of metabolites varied within species. Androstenedione was more prominent in the animal species, and an increase over time was seen in equines. Testosterone hydroxylation was predominantly catalyzed by the CYP3A subfamily in all three species. While CYP2C9 did not metabolise testosterone, the canine ortholog CYP2C21 produced androstenedione. Quercetin significantly inhibited 6β- and 11β-hydroxytestosterone in all species investigated, suggesting that CYP2C8 is involved in testosterone metabolism, whereas sulfaphenazole significantly inhibited the formation of 6β- and 11β-hydroxytestosterone in human microsomes, at 60min in equine microsomes, but not in canine microsomes. A contribution of CYP2B6 in testosterone metabolism was only found in human and equine microsomes. Inhibition of 17β-hydroxysteroid dehydrogenase 2 indicated its involvement in androstenedione formation in humans, increased androstenedione formation was found in equines and no involvement in canines. These findings provide improved understanding of differences in testosterone biotransformation in animal species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our knowledge about the effect of single-tree influence areas on the physicochemical properties of the underlying mineral soil in forest ecosystems is still limited. This restricts our ability to adequately estimate future changes in soil functioning due to forest management practices. We studied the stand scale spatial variation of different soil organic matter species investigated by 13C NMR spectroscopy, lignin phenol and neutral sugar analysis under an unmanaged mountainous high-elevation Norway spruce (Picea abies L.) forest in central Europe. Multivariate geostatistical approaches were applied to relate the spatial patterns of the different soil organic matter species to topographic parameters, bulk density, oxalate- and dithionite-extractable iron, pH, and the impact of tree distribution. Soil samples were taken from the mineral top soil. Generally, the stand scale distribution patterns of different soil organic matter compounds could be divided into two groups: Those compounds, which were significantly spatially correlated with topography/altitude and those with small scale spatial pattern (range ≤ 10 m) that was closely related to tree distribution. The concentration of plant-derived soil organic matter components, such as lignin, at a given sampling point was significantly spatially related to the distance of the nearest tree (p ≤ 0.05). In contrast, the spatial distribution of mainly microbial-derived compounds (e.g. galactose and mannose) could be attributed to the dominating impact of small-scale topography and the contribution of poorly crystalline iron oxides that were significantly larger in the central depression of the study site compared to crest and slope positions. Our results demonstrate that topographic parameters dominate the distribution of overall topsoil organic carbon (OC) stocks at temperate high-elevation forest ecosystems, particularly in sloped terrain. However, trees superimpose topography-controlled OC biogeochemistry beneath their crown by releasing litter and changing soil conditions in comparison to open areas. This may lead to distinct zones with different mechanisms of soil organic matter degradation and also stabilization in forest stands.