20 resultados para Phase-Stepping Method
Resumo:
Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging.
Resumo:
BACKGROUND The optimal management of high-risk prostate cancer remains uncertain. In this study we assessed the safety and efficacy of a novel multimodal treatment paradigm for high-risk prostate cancer. METHODS This was a prospective phase II trial including 35 patients with newly diagnosed high-risk localized or locally advanced prostate cancer treated with high-dose intensity-modulated radiation therapy preceded or not by radical prostatectomy, concurrent intensified-dose docetaxel-based chemotherapy and long-term androgen deprivation therapy. Primary endpoint was acute and late toxicity evaluated with the Common Terminology Criteria for Adverse Events version 3.0. Secondary endpoint was biochemical and clinical recurrence-free survival explored with the Kaplan-Meier method. RESULTS Acute gastro-intestinal and genito-urinary toxicity was grade 2 in 23% and 20% of patients, and grade 3 in 9% and 3% of patients, respectively. Acute blood/bone marrow toxicity was grade 2 in 20% of patients. No acute grade ≥ 4 toxicity was observed. Late gastro-intestinal and genito-urinary toxicity was grade 2 in 9% of patients each. No late grade ≥ 3 toxicity was observed. Median follow-up was 63 months (interquartile range 31-79). Actuarial 5-year biochemical and clinical recurrence-free survival rate was 55% (95% confidence interval, 35-75%) and 70% (95% confidence interval, 52-88%), respectively. CONCLUSIONS In our phase II trial testing a novel multimodal treatment paradigm for high-risk prostate cancer, toxicity was acceptably low and mid-term oncological outcome was good. This treatment paradigm, thus, may warrant further evaluation in phase III randomized trials.
Resumo:
Free arachidonic acid is functionally interlinked with different lipid signaling networks including those involving prostanoid pathways, the endocannabinoid system, N-acylethanolamines, as well as steroids. A sensitive and specific LC-MS/MS method for the quantification of arachidonic acid, prostaglandin E2, thromboxane B2, anandamide, 2-arachidonoylglycerol, noladin ether, lineoyl ethanolamide, oleoyl ethanolamide, palmitoyl ethanolamide, steroyl ethanolamide, aldosterone, cortisol, dehydroepiandrosterone, progesterone, and testosterone in human plasma was developed and validated. Analytes were extracted using acetonitrile precipitation followed by solid phase extraction. Separations were performed by UFLC using a C18 column and analyzed on a triple quadrupole MS with electron spray ionization. Analytes were run first in negative mode and, subsequently, in positive mode in two independent LC-MS/MS runs. For each analyte, two MRM transitions were collected in order to confirm identity. All analytes showed good linearity over the investigated concentration range (r>0.98). Validated LLOQs ranged from 0.1 to 190ng/mL and LODs ranged from 0.04 to 12.3ng/mL. Our data show that this LC-MS/MS method is suitable for the quantification of a diverse set of bioactive lipids in plasma from human donors (n=32). The determined plasma levels are in agreement with the literature, thus providing a versatile method to explore pathophysiological processes in which changes of these lipids are implicated.
Resumo:
BACKGROUND VEGF and VEGF receptor-2-mediated angiogenesis contribute to hepatocellular carcinoma pathogenesis. Ramucirumab is a recombinant IgG1 monoclonal antibody and VEGF receptor-2 antagonist. We aimed to assess the safety and efficacy of ramucirumab in advanced hepatocellular carcinoma following first-line therapy with sorafenib. METHODS In this randomised, placebo-controlled, double-blind, multicentre, phase 3 trial (REACH), patients were enrolled from 154 centres in 27 countries. Eligible patients were aged 18 years or older, had hepatocellular carcinoma with Barcelona Clinic Liver Cancer stage C disease or stage B disease that was refractory or not amenable to locoregional therapy, had Child-Pugh A liver disease, an Eastern Cooperative Oncology Group performance status of 0 or 1, had previously received sorafenib (stopped because of progression or intolerance), and had adequate haematological and biochemical parameters. Patients were randomly assigned (1:1) to receive intravenous ramucirumab (8 mg/kg) or placebo every 2 weeks, plus best supportive care, until disease progression, unacceptable toxicity, or death. Randomisation was stratified by geographic region and cause of liver disease with a stratified permuted block method. Patients, medical staff, investigators, and the funder were masked to treatment assignment. The primary endpoint was overall survival in the intention-to-treat population. This study is registered with ClinicalTrials.gov, number NCT01140347. FINDINGS Between Nov 4, 2010, and April 18, 2013, 565 patients were enrolled, of whom 283 were assigned to ramucirumab and 282 were assigned to placebo. Median overall survival for the ramucirumab group was 9·2 months (95% CI 8·0-10·6) versus 7·6 months (6·0-9·3) for the placebo group (HR 0·87 [95% CI 0·72-1·05]; p=0·14). Grade 3 or greater adverse events occurring in 5% or more of patients in either treatment group were ascites (13 [5%] of 277 patients treated with ramucirumab vs 11 [4%] of 276 patients treated with placebo), hypertension (34 [12%] vs ten [4%]), asthenia (14 [5%] vs five [2%]), malignant neoplasm progression (18 [6%] vs 11 [4%]), increased aspartate aminotransferase concentration (15 [5%] vs 23 [8%]), thrombocytopenia (13 [5%] vs one [<1%]), hyperbilirubinaemia (three [1%] vs 13 [5%]), and increased blood bilirubin (five [2%] vs 14 [5%]). The most frequently reported (≥1%) treatment-emergent serious adverse event of any grade or grade 3 or more was malignant neoplasm progression. INTERPRETATION Second-line treatment with ramucirumab did not significantly improve survival over placebo in patients with advanced hepatocellular carcinoma. No new safety signals were noted in eligible patients and the safety profile is manageable. FUNDING Eli Lilly and Co.
Resumo:
Purpose To investigate whether nonhemodynamic resonant saturation effects can be detected in patients with focal epilepsy by using a phase-cycled stimulus-induced rotary saturation (PC-SIRS) approach with spin-lock (SL) preparation and whether they colocalize with the seizure onset zone and surface interictal epileptiform discharges (IED). Materials and Methods The study was approved by the local ethics committee, and all subjects gave written informed consent. Eight patients with focal epilepsy undergoing presurgical surface and intracranial electroencephalography (EEG) underwent magnetic resonance (MR) imaging at 3 T with a whole-brain PC-SIRS imaging sequence with alternating SL-on and SL-off and two-dimensional echo-planar readout. The power of the SL radiofrequency pulse was set to 120 Hz to sensitize the sequence to high gamma oscillations present in epileptogenic tissue. Phase cycling was applied to capture distributed current orientations. Voxel-wise subtraction of SL-off from SL-on images enabled the separation of T2* effects from rotary saturation effects. The topography of PC-SIRS effects was compared with the seizure onset zone at intracranial EEG and with surface IED-related potentials. Bayesian statistics were used to test whether prior PC-SIRS information could improve IED source reconstruction. Results Nonhemodynamic resonant saturation effects ipsilateral to the seizure onset zone were detected in six of eight patients (concordance rate, 0.75; 95% confidence interval: 0.40, 0.94) by means of the PC-SIRS technique. They were concordant with IED surface negativity in seven of eight patients (0.88; 95% confidence interval: 0.51, 1.00). Including PC-SIRS as prior information improved the evidence of the standard EEG source models compared with the use of uninformed reconstructions (exceedance probability, 0.77 vs 0.12; Wilcoxon test of model evidence, P < .05). Nonhemodynamic resonant saturation effects resolved in patients with favorable postsurgical outcomes, but persisted in patients with postsurgical seizure recurrence. Conclusion Nonhemodynamic resonant saturation effects are detectable during interictal periods with the PC-SIRS approach in patients with epilepsy. The method may be useful for MR imaging-based detection of neuronal currents in a clinical environment. (©) RSNA, 2016 Online supplemental material is available for this article.