135 resultados para Periprosthetic Femur Fracture, Anterior Cortica Bone Windowing
Resumo:
OBJECTIVE: To report clinical evaluation of the clamp rod internal fixator 4.5/5.5 (CRIF 4.5/5.5) in bovine long-bone fracture repair. STUDY DESIGN: Retrospective study. ANIMALS: Cattle (n=22) with long-bone fractures. METHODS: Records for cattle with long-bone fractures repaired between 1999 and 2004 with CRIF 4.5/5.5 were reviewed. Quality of fracture repair, fracture healing, and clinical outcome were investigated by means of clinical examination, medical records, radiographs, and telephone questionnaire. RESULTS: Successful long-term outcome was achieved in 18 cattle (82%); 4 were euthanatized 2-14 days postoperatively because of fracture breakdowns. Two cattle had movement of clamps on the rod. Moderate to severe callus formation was evident in 11 cattle 6 months postoperatively. CONCLUSIONS: Movement of clamps on the rod was recognized as implant failure unique to the CRIF. This occurred in cattle with poor fracture stability because of an extensive cortical defect. The CRIF system may not be ideal to treat metacarpal/metatarsal fractures because its voluminous size makes skin closure difficult, thereby increasing the risk of postoperative infections. CLINICAL RELEVANCE: CRIF cannot be recommended for repair of complicated long-bone fractures in cattle.
Resumo:
To compare the prediction of hip fracture risk of several bone ultrasounds (QUS), 7062 Swiss women > or =70 years of age were measured with three QUSs (two of the heel, one of the phalanges). Heel QUSs were both predictive of hip fracture risk, whereas the phalanges QUS was not. INTRODUCTION: As the number of hip fracture is expected to increase during these next decades, it is important to develop strategies to detect subjects at risk. Quantitative bone ultrasound (QUS), an ionizing radiation-free method, which is transportable, could be interesting for this purpose. MATERIALS AND METHODS: The Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk (SEMOF) study is a multicenter cohort study, which compared three QUSs for the assessment of hip fracture risk in a sample of 7609 elderly ambulatory women > or =70 years of age. Two QUSs measured the heel (Achilles+; GE-Lunar and Sahara; Hologic), and one measured the heel (DBM Sonic 1200; IGEA). The Cox proportional hazards regression was used to estimate the hazard of the first hip fracture, adjusted for age, BMI, and center, and the area under the ROC curves were calculated to compare the devices and their parameters. RESULTS: From the 7609 women who were included in the study, 7062 women 75.2 +/- 3.1 (SD) years of age were prospectively followed for 2.9 +/- 0.8 years. Eighty women reported a hip fracture. A decrease by 1 SD of the QUS variables corresponded to an increase of the hip fracture risk from 2.3 (95% CI, 1.7, 3.1) to 2.6 (95% CI, 1.9, 3.4) for the three variables of Achilles+ and from 2.2 (95% CI, 1.7, 3.0) to 2.4 (95% CI, 1.8, 3.2) for the three variables of Sahara. Risk gradients did not differ significantly among the variables of the two heel QUS devices. On the other hand, the phalanges QUS (DBM Sonic 1200) was not predictive of hip fracture risk, with an adjusted hazard risk of 1.2 (95% CI, 0.9, 1.5), even after reanalysis of the digitalized data and using different cut-off levels (1700 or 1570 m/s). CONCLUSIONS: In this elderly women population, heel QUS devices were both predictive of hip fracture risk, whereas the phalanges QUS device was not.
Resumo:
PURPOSE: To evaluate the pulp sensitivity and vitality of mandibular incisors and canines before and after bone harvesting in the symphysis. MATERIALS AND METHODS: In 20 patients requiring bone grafts from the symphysis, pulp sensitivity (carbon dioxide [CO2]) and pulpal blood flow (laser Doppler flowmetry [LDF]) of mandibular incisors and canines were evaluated preoperatively, postoperatively, and 6 months after surgery. Teeth were allocated to 1 of 3 groups according to their initial and final reaction to CO2 (group A = teeth with a positive reaction throughout the study, group B = teeth that exhibited a sensitivity change from positive to negative, and group C = teeth with a negative reaction throughout the study). RESULTS: Preoperative flux measurements (LDF) did not differ between groups A, B, and C. Teeth with sensitivity changes (group B) showed the greatest decrease (a statistically significant decrease) of pulpal blood flow over time, whereas teeth in groups A and C demonstrated an insignificant reduction of flux over time. DISCUSSION AND CONCLUSIONS: LDF was purely used as an experimental tool in the present study. Pulpal blood flow measurements using LDF demonstrated a decrease of flux over time in anterior mandibular teeth following bone harvesting in the symphysis. A significant change of flux, however, was only observed for teeth that also demonstrated a loss of pulp sensitivity during the same study period. Loss of pulp sensitivity appeared to be correlated to a significant decrease of blood flow assessed by LDF.
Resumo:
Spinal cord injury (SCI) leads to severe bone loss in the paralysed limbs and to a resulting increased fracture risk thereof. Since long bone fractures can lead to comorbidities and a reduction in quality of life, it is important to improve bone strength in people with chronic SCI. In this prospective longitudinal cohort study, we investigated whether functional electrical stimulation (FES) induced high-volume cycle training can partially reverse the loss of bone substance in the legs after chronic complete SCI. Eleven participants with motor-sensory complete SCI (mean age 41.9+/-7.5 years; 11.0+/-7.1 years post injury) were recruited. After an initial phase of 14+/-7 weeks of FES muscle conditioning, participants performed on average 3.7+/-0.6 FES-cycling sessions per week, of 58+/-5 min each, over 12 months at each individual's highest power output. Bone and muscle parameters were investigated in the legs by means of peripheral quantitative computed tomography before the muscle conditioning (t1), and after six (t2) and 12 months (t3) of high-volume FES-cycle training. After 12 months of FES-cycling, trabecular and total bone mineral density (BMD) as well as total cross-sectional area in the distal femoral epiphysis increased significantly by 14.4+/-21.1%, 7.0+/-10.8% and 1.2+/-1.5%, respectively. Bone parameters in the femoral shaft showed small but significant decreases, with a reduction of 0.4+/-0.4% in cortical BMD, 1.8+/-3.0% in bone mineral content, and 1.5+/-2.1% in cortical thickness. These decreases mainly occurred between t1 and t2. No significant changes were found in any of the measured bone parameters in the tibia. Muscle CSA at the thigh increased significantly by 35.5+/-18.3%, while fat CSA at the shank decreased by 16.7+/-12.3%. Our results indicate that high-volume FES-cycle training leads to site-specific skeletal changes in the paralysed limbs, with an increase in bone parameters at the actively loaded distal femur but not the passively loaded tibia. Thus, we conclude that high-volume FES-induced cycle training has clinical relevance as it can partially reverse bone loss and thus may reduce fracture risk at this fracture prone site.
Resumo:
Context: In the Health Outcomes and Reduced Incidence with Zoledronic Acid Once Yearly - Pivotal Fracture Trial (HORIZON-PFT), zoledronic acid (ZOL) 5 mg significantly reduced fracture risk. Objective: To identify factors associated with greater efficacy during ZOL 5 mg treatment. Design, Setting and Patients: Subgroup analysis (preplanned and post hoc) of a multicenter, double-blind, placebo-controlled, 36-month trial in 7765 women with postmenopausal osteoporosis. Intervention: Single infusion of ZOL 5 mg or placebo at baseline, 12 and 24 months. Main Outcome Measures: Primary endpoints: new vertebral fracture and hip fracture. Secondary endpoints: non-vertebral fracture, change in femoral neck bone mineral density (BMD). Baseline risk factor subgroups: age, BMD T-score and vertebral fracture status, total hip BMD, race, weight, geographical region, smoking, height loss, history of falls, physical activity, prior bisphosphonates, creatinine clearance, body mass index (BMI), concomitant osteoporosis medications. Results: Greater ZOL induced effects on vertebral fracture risk with younger age (treatment-by-subgroup interaction P=0.05), normal creatinine clearance (P=0.04), and BMI >/=25 kg/m(2) (P=0.02). There were no significant treatment-factor interactions for hip or non-vertebral fracture or for change in BMD. Conclusions: ZOL appeared more effective in preventing vertebral fracture in younger women, overweight/obese women and women with normal renal function. ZOL had similar effects irrespective of fracture risk factors or femoral neck BMD.
Resumo:
INTRODUCTION: This report of 2 cases describes the diagnostic procedures used to identify 2 Stafne's bone cavities (SBC) found in unusually anterior locations in the mandible, both mimicking periapical lesions of endodontic origin. METHODS: In the first patient, a 47-year-old man, an SBC was diagnosed in the area of teeth #27, 28, and 29. In the second patient, a 62-year-old man, the SBC was a fortuitous finding, because this patient was referred for dental implant therapy. RESULTS: In both cases, the final diagnosis was achieved by using limited cone beam computed tomography (CBCT) and magnetic resonance imaging (MRI). In both patients, the lingual bone cavity was found to be occupied by accessory salivary gland tissue. CONCLUSIONS: The combination of CBCT and MRI as noninvasive diagnostic techniques seems ideal to avoid surgical explorations, incisional biopsies, or enucleations of the lesion for diagnostic purposes.
Resumo:
BACKGROUND: Reduced bone mineral density (BMD) is common in adults infected with human immunodeficiency virus (HIV). The role of proximal renal tubular dysfunction (PRTD) and alterations in bone metabolism in HIV-related low BMD are incompletely understood. METHODS: We quantified BMD (dual-energy x-ray absorptiometry), blood and urinary markers of bone metabolism and renal function, and risk factors for low BMD (hip or spine T score, -1 or less) in an ambulatory care setting. We determined factors associated with low BMD and calculated 10-year fracture risks using the World Health Organization FRAX equation. RESULTS: We studied 153 adults (98% men; median age, 48 years; median body mass index, 24.5; 67 [44%] were receiving tenofovir, 81 [53%] were receiving a boosted protease inhibitor [PI]). Sixty-five participants (42%) had low BMD, and 11 (7%) had PRTD. PI therapy was associated with low BMD in multivariable analysis (odds ratio, 2.69; 95% confidence interval, 1.09-6.63). Tenofovir use was associated with increased osteoblast and osteoclast activity (P< or = .002). The mean estimated 10-year risks were 1.2% for hip fracture and 5.4% for any major osteoporotic fracture. CONCLUSIONS: In this mostly male population, low BMD was significantly associated with PI therapy. Tenofovir recipients showed evidence of increased bone turnover. Measurement of BMD and estimation of fracture risk may be warranted in treated HIV-infected adults.
Resumo:
To study the time course of demineralization and fracture incidence after spinal cord injury (SCI), 100 paraplegic men with complete motor loss were investigated in a cross-sectional study 3 months to 30 years after their traumatic SCI. Fracture history was assessed and verified using patients' files and X-rays. BMD of the lumbar spine (LS), femoral neck (FN), distal forearm (ultradistal part = UDR, 1/3 distal part = 1/3R), distal tibial diaphysis (TDIA), and distal tibial epiphysis (TEPI) was measured using DXA. Stiffness of the calcaneus (QUI.CALC), speed of sound of the tibia (SOS.TIB), and amplitude-dependent SOS across the proximal phalanges (adSOS.PHAL) were measured using QUS. Z-Scores of BMD and quantitative ultrasound (QUS) were plotted against time-since-injury and compared among four groups of paraplegics stratified according to time-since-injury (<1 year, stratum I; 1-9 years, stratum II; 10-19 years, stratum III; 20-29 years, stratum IV). Biochemical markers of bone turnover (deoxypyridinoline/creatinine (D-pyr/Cr), osteocalcin, alkaline phosphatase) and the main parameters of calcium phosphate metabolism were measured. Fifteen out of 98 paraplegics had sustained a total of 39 fragility fractures within 1,010 years of observation. All recorded fractures were fractures of the lower limbs, mean time to first fracture being 8.9 +/- 1.4 years. Fracture incidence increased with time-after-SCI, from 1% in the first 12 months to 4.6%/year in paraplegics since >20 years ( p<.01). The overall fracture incidence was 2.2%/year. Compared with nonfractured paraplegics, those with a fracture history had been injured for a longer time ( p<.01). Furthermore, they had lower Z-scores at FN, TEPI, and TDIA ( p<.01 to <.0001), the largest difference being observed at TDIA, compared with the nonfractured. At the lower limbs, BMD decreased with time at all sites ( r=.49 to.78, all p<.0001). At FN and TEPI, bone loss followed a log curve which leveled off between 1 to 3 years after injury. In contrast, Z-scores of TDIA continuously decreased even beyond 10 years after injury. LS BMD Z-score increased with time-since-SCI ( p<.05). Similarly to DXA, QUS allowed differentiation of early and rapid trabecular bone loss (QUI.CALC) vs slow and continuous cortical bone loss (SOS.TIB). Biochemical markers reflected a disproportion between highly elevated bone resorption and almost normal bone formation early after injury. Turnover declined following a log curve with time-after-SCI, however, D-pyr/Cr remained elevated in 30% of paraplegics injured >10 years. In paraplegic men early (trabecular) and persistent (cortical) bone loss occurs at the lower limbs and leads to an increasing fracture incidence with time-after-SCI.
Resumo:
Plates used for fracture fixation produce vascular injury to the underlying cortical bone. During the recovery of the blood supply, temporary osteoporosis is observed as a result of Haversian remodeling of the necrotic bone. This process temporarily reduces the strength of the bone. We tackled the postulate that quantitative differences exist between animal species, and in different bones within the same species, due to variations in the relative importance of the endosteal and periosteal blood supplies. Using implants scaled to the size of the bone, we found comparable cortical vascular damage in the sheep and in the dog, and in the tibia and femur of each animal. We observed a significant reduction in cortical vascular damage using plates that had a smaller contact area with the underlying bone. No significant difference in cortical vascular damage was noted in animals of different ages.