30 resultados para Pencil-drawn electrodes
Resumo:
We present a voltammetric and in situ STM study of 11-ferrocenyl-1-undecanethiol (FcC11) assembled on low-index single crystal and polycrystalline gold electrodes. The influence of electrode surface structure as well as of structure defects in the self-assembled FcC11 monolayers on the electrochemical response during the oxidation and reduction of the terminal ferrocene group is explored. The nature of the redox peaks is discussed in detail. We identified the coexistence of disordered FcC11 regions with 2D patches of “locally ordered” FcC11 species. We demonstrate that close-packed domains are preferentially formed at atomically flat terraces. Increasing the defect density of the substrate surface leads to a decreasing amount of locally ordered FcC11 molecules.
Resumo:
Semi-natural grasslands are widely recognized for their high ecological value. They often count among the most species-rich habitats, especially in traditional cultural landscapes. Maintaining and/or restoring them is a top priority, but nevertheless represents a real conservation challenge, especially regarding their invertebrate assemblages. The main goal of this study was to experimentally investigate the influence of four different mowing regimes on orthopteran communities and populations: (1) control meadow (C-meadow): mowing regime according to the Swiss regulations for extensively managed meadows declared as ecological compensation areas, i.e. first cut not before 15 June; (2) first cut not before 15 July (delayed treatment, D-meadow); (3) first cut not before 15 June and second cut not earlier than 8 weeks from the first cut (8W-meadow); (4) refuges left uncut on 10–20% of the meadow area (R-meadow). Data were collected two years after the introduction of these mowing treatments. Orthopteran densities from spring to early summer were five times higher in D-meadows, compared to C-meadows. In R-meadows, densities were, on average, twice as high as in C-meadows, while mean species richness was 23% higher in R-meadows than in C-meadows. Provided that farmers were given the appropriate financial incentives, the D- and R-meadow regimes could be relatively easy to implement within agri-environment schemes. Such meadows could deliver substantial benefits for functional biodiversity, including sustenance to many secondary consumers dependent on field invertebrates as staple food.
Resumo:
Planar electrodes are increasingly used in therapeutic neural stimulation techniques such as functional electrical stimulation, epidural spinal cord stimulation (ESCS), and cortical stimulation. Recently, optimized electrode geometries have been shown to increase the efficiency of neural stimulation by increasing the variation of current density on the electrode surface. In the present work, a new family of modified fractal electrode geometries is developed to enhance the efficiency of neural stimulation. It is shown that a promising approach in increasing the neural activation function is to increase the "edginess" of the electrode surface, a concept that is explained and quantified by fractal mathematics. Rigorous finite element simulations were performed to compute electric potential produced by proposed modified fractal geometries. The activation of 256 model axons positioned around the electrodes was then quantified, showing that modified fractal geometries required a 22% less input power while maintaining the same level of neural activation. Preliminary in vivo experiments investigating muscle evoked potentials due to median nerve stimulation showed encouraging results, supporting the feasibility of increasing neural stimulation efficiency using modified fractal geometries.
Resumo:
The emerging application of long-term and high-quality ECG recording requires alternative electrodes to improve the signal quality and recording capability of surface skin electrodes. The esophageal ECG has the potential to overcome these limitations but necessitates novel recorder and lead designs. The electrode material is of particular interest, since the material has to ensure conflicting requirements like excellent biopotential recording properties and inertness. To this end, novel electrode materials like PEDOT and silver-PDMS as well as established electrode materials such as stainless steel, platinum, gold, iridium oxide, titanium nitride, and glassy carbon were investigated by long-term electrochemical impedance spectroscopy and model-based signal analysis using the derived in vitro interfacial properties in conjunction with a dedicated ECG amplifier. The results of this novel approach show that titanium nitride and iridium oxide featuring microstructured surfaces did not degrade when exposed to artificial acidic saliva. These materials provide low electrode potential drifts and insignificant signal distortion superior to surface skin electrodes making them compatible with accepted standards for ambulatory ECG. They are superior to the noble and polarizable metals such as platinum, silver, and gold that induced more signal distortions and are superior to esophageal stainless steel electrodes that corrode in artificial saliva. The study provides rigorous criteria for the selection of electrode materials for prolonged ECG recording by combining long-term in vitro electrode material properties with ECG signal quality assessment.
Resumo:
BACKGROUND Electrochemical conversion of xenobiotics has been shown to mimic human phase I metabolism for a few compounds. MATERIALS & METHODS Twenty-one compounds were analyzed with a semiautomated electrochemical setup and mass spectrometry detection. RESULTS The system was able to mimic some metabolic pathways, such as oxygen gain, dealkylation and deiodination, but many of the expected and known metabolites were not produced. CONCLUSION Electrochemical conversion is a useful approach for the preparative synthesis of some types of metabolites, but as a screening method for unknown phase I metabolites, the method is, in our opinion, inferior to incubation with human liver microsomes and in vivo experiments with laboratory animals, for example.
Resumo:
Recently, many studies about a network active during rest and deactivated during tasks emerged in the literature: the default mode network (DMN). Spatial and temporal DMN features are important markers for psychiatric diseases. Another prominent indicator of cognitive functioning, yielding information about the mental condition in health and disease, is working memory (WM) processing. In EEG studies, frontal-midline theta power has been shown to increase with load during WM retention in healthy subjects. From these findings, the conclusion can be drawn that an increase in resting state DMN activity may go along with an increase in theta power in high-load WM conditions. We followed this hypothesis in a study on 17 healthy subjects performing a visual Sternberg WM task. The DMN was obtained by a BOLD-ICA approach and its dynamics represented by the percent-strength during pre-stimulus periods. DMN dynamics were temporally correlated with EEG theta spectral power from retention intervals. This so-called covariance mapping yielded the spatial distribution of the theta EEG fluctuations associated with the dynamics of the DMN. In line with previous findings, theta power was increased at frontal-midline electrodes in high- versus low-load conditions during early WM retention. However, load-dependent correlations of DMN with theta power resulted in primarily positive correlations in low-load conditions, while during high-load conditions negative correlations of DMN activity and theta power were observed at frontal-midline electrodes. This DMN-dependent load effect reached significance during later retention. Our results show a complex and load-dependent interaction of pre-stimulus DMN activity and theta power during retention, varying over the course of the retention period. Since both, WM performance and DMN activity, are markers of mental health, our results could be important for further investigations of psychiatric populations.
Resumo:
Perchlorate adsorption on Au(1 1 1) was investigated by cyclic voltammetry and surface-enhanced infrared absorption spectroscopy. We found that the electrosorption valency of ClO4− on Au(1 1 1) is ∼ 0.6 and the total coverage of ClO4− on Au(1 1 1) is higher (∼ 0.15) than previously estimated (∼ 0.04). Based on the experimental adsorption isotherms obtained from infrared spectra and the reconstruction-free cyclic voltammograms, we proposed a mechanism for the ClO4− adsorption on Au(1 1 1).
Resumo:
Techniques of electrode modification by copper deposits are developed that allow obtaining compact bulk quasi-epitaxial deposits on basal Pt(hkl) single crystal faces. The issues of the deposit roughness and characterization are discussed. Problems of drying and transferring electrodes with copper deposits into other solutions are considered. The obtained deposits are used for CO2 electroreduction in propylene carbonate and acetonitrile solutions of 0.1 M TBAPF6, and the relationship between the electrode surface structure and its electrocatalytic activity in CO2 electroreduction is discussed. We also demonstrate that the restructuring of Cu deposits occurs upon CO2 electroreduction. Complementary reactivity studies are presented for bare Pt(hkl) and Cu(hkl) single crystal electrodes. Cu-modified Pt(hkl) electrodes display the highest activity as compared to bare Pt(hkl) and Cu(hkl). Particularly, the Cu/Pt(110) electrode shows the highest activity among the electrodes under study. Such high activity of Cu/Pt(hkl) electrodes can be explained not only by the increasing actual surface area but also by structural effects, namely by the presence of a large amount of specific defect sites (steps, kinks) on Cu crystallites.
Resumo:
OBJECTIVE Cochlear implants (CI) are standard treatment for prelingually deafened children and postlingually deafened adults. Computed tomography (CT) is the standard method for postoperative imaging of the electrode position. CT scans accurately reflect electrode depth and position, which is essential prior to use. However, routine CT examinations expose patients to radiation, which is especially problematic in children. We examined whether new CT protocols could reduce radiation doses while preserving diagnostic accuracy. METHODS To investigate whether electrode position can be assessed by low-dose CT protocols, a cadaveric lamb model was used because the inner ear morphology is similar to humans. The scans were performed at various volumetric CT dose-indexes CTDIvol)/kV combinations. For each constant CTDIvol the tube voltage was varied (i.e., 80, 100, 120 and 140kV). This procedure was repeated at different CTDIvol values (21mGy, 11mGy, 5.5mGy, 2.8mGy and 1.8mGy). To keep the CTDIvol constant at different tube voltages, the tube current values were adjusted. Independent evaluations of the images were performed by two experienced and blinded neuroradiologists. The criteria diagnostic usefulness, image quality and artifacts (scaled 1-4) were assessed in 14 cochlear-implanted cadaveric lamb heads with variable tube voltages. RESULTS Results showed that the standard CT dose could be substantially reduced without sacrificing diagnostic accuracy of electrode position. The assessment of the CI electrode position was feasible in almost all cases up to a CTDIvol of 2-3mGy. The number of artifacts did not increase for images within this dose range as compared to higher dosages. The extent of the artifacts caused by the implanted metal-containing CI electrode does not depend on the radiation dose and is not perceptibly influenced by changes in the tube voltage. Summarizing the evaluation of the CI electrode position is possible even at a very low radiation dose. CONCLUSIONS CT imaging of the temporal bone for postoperative electrode position control of the CI is possible with a very low and significantly radiation dose. The tube current-time product and voltage can be reduced by 50% without increasing artifacts. Low-dose postoperative CT scans are sufficient for localizing the CI electrode.
Resumo:
BACKGROUND Skull-base chondrosarcoma (ChSa) is a rare disease, and the prognostication of this disease entity is ill defined. METHODS We assessed the long-term local control (LC) results, overall survival (OS), and prognostic factors of skull-base ChSa patients treated with pencil beam scanning proton therapy (PBS PT). Seventy-seven (male, 35; 46%) patients with histologically confirmed ChSa were treated at the Paul Scherrer Institute. Median age was 38.9 years (range, 10.2-70.0y). Median delivered dose was 70.0 GyRBE (range, 64.0-76.0 GyRBE). LC, OS, and toxicity-free survival (TFS) rates were calculated using the Kaplan Meier method. RESULTS After a mean follow-up of 69.2 months (range, 4.6-190.8 mo), 6 local (7.8%) failures were observed, 2 of which were late failures. Five (6.5%) patients died. The actuarial 8-year LC and OS were 89.7% and 93.5%, respectively. Tumor volume > 25 cm(3) (P = .02), brainstem/optic apparatus compression at the time of PT (P = .04) and age >30 years (P = .08) were associated with lower rates of LC. High-grade (≥3) radiation-induced toxicity was observed in 6 (7.8%) patients. The 8-year high-grade TFS was 90.8%. A higher rate of high-grade toxicity was observed for older patients (P = .073), those with larger tumor volume (P = .069), and those treated with 5 weekly fractions (P = .069). CONCLUSIONS This is the largest PT series reporting the outcome of patients with low-grade ChSa of the skull base treated with PBS only. Our data indicate that protons are both safe and effective. Tumor volume, brainstem/optic apparatus compression, and age were prognosticators of local failures.
Resumo:
BACKGROUND Parameningeal rhabdomyosarcomas (PM-RMSs) represent approximately 25% of all rhabdomyosarcoma (RMS) cases. These tumors are associated with early recurrence and poor prognosis. This study assessed the clinical outcome and late toxicity of pencil beam scanning (PBS) proton therapy (PT) in the treatment of children with PM-RMS. PROCEDURES Thirty-nine children with PM-RMS received neoadjuvant chemotherapy followed by PBS-PT at the Paul Scherrer Institute, with concomitant chemotherapy. The median age was 5.8 years (range, 1.2-16.1). Due to young age, 25 patients (64%) required general anesthesia during PT. The median time from the start of chemotherapy to PT was 13 weeks (range, 3-23 weeks). Median prescription dose was 54 Gy (relative biologic effectiveness, RBE). RESULTS With a mean follow-up of 41 months (range, 9-106 months), 10 patients failed. The actuarial 5-year progression-free survival (PFS) was 72% (95% CI, 67-94%) and the 5-year overall survival was 73% (95% CI, 69-96%). On univariate analysis, a delay in the initiation of PT (>13 weeks) was a significant detrimental factor for PFS. Three (8%) patients presented with grade 3 radiation-induced toxicity. The estimated actuarial 5-year toxicity ≥grade 3 free survival was 95% (95% CI, 94-96%). CONCLUSIONS Our data contribute to the growing body of evidence demonstrating the safety and effectiveness of PT for pediatric patients with PM-RMS. These preliminary results are encouraging and in line with other combined proton-photon and photons series; observed toxicity was acceptable.
Resumo:
PURPOSE The safe clinical implementation of pencil beam scanning (PBS) proton therapy for lung tumors is complicated by the delivery uncertainties caused by breathing motion. The purpose of this feasibility study was to investigate whether a voluntary breath-hold technique could limit the delivery uncertainties resulting from interfractional motion. METHODS AND MATERIALS Data from 15 patients with peripheral lung tumors previously treated with stereotactic radiation therapy were included in this study. The patients had 1 computed tomographic (CT) scan in voluntary breath-hold acquired before treatment and 3 scans during the treatment course. PBS proton treatment plans with 2 fields (2F) and 3 fields (3F), respectively, were calculated based on the planning CT scan and subsequently recalculated on the 3 repeated CT scans. Recalculated plans were considered robust if the V95% (volume receiving ≥95% of the prescribed dose) of the gross target volume (GTV) was within 5% of what was expected from the planning CT data throughout the simulated treatment. RESULTS A total of 14/15 simulated treatments for both 2F and 3F met the robustness criteria. Reduced V95% was associated with baseline shifts (2F, P=.056; 3F, P=.008) and tumor size (2F, P=.025; 3F, P=.025). Smaller tumors with large baseline shifts were also at risk for reduced V95% (interaction term baseline/size: 2F, P=.005; 3F, P=.002). CONCLUSIONS The breath-hold approach is a realistic clinical option for treating lung tumors with PBS proton therapy. Potential risk factors for reduced V95% are small targets in combination with large baseline shifts. On the basis of these results, the baseline shift of the tumor should be monitored (eg, through image guided therapy), and appropriate measures should be taken accordingly. The intrafractional motion needs to be investigated to confirm that the breath-hold approach is robust.
Resumo:
Proton therapy is a high precision technique in cancer radiation therapy which allows irradiating the tumor with minimal damage to the surrounding healthy tissues. Pencil beam scanning is the most advanced dose distribution technique and it is based on a variable energy beam of a few millimeters FWHM which is moved to cover the target volume. Due to spurious effects of the accelerator, of dose distribution system and to the unavoidable scattering inside the patient's body, the pencil beam is surrounded by a halo that produces a peripheral dose. To assess this issue, nuclear emulsion films interleaved with tissue equivalent material were used for the first time to characterize the beam in the halo region and to experimentally evaluate the corresponding dose. The high-precision tracking performance of the emulsion films allowed studying the angular distribution of the protons in the halo. Measurements with this technique were performed on the clinical beam of the Gantry1 at the Paul Scherrer Institute. Proton tracks were identified in the emulsion films and the track density was studied at several depths. The corresponding dose was assessed by Monte Carlo simulations and the dose profile was obtained as a function of the distance from the center of the beam spot.