26 resultados para Particle-based Model
Resumo:
Metallic catcher foils have been investigated on their thermal release capabilities for future superheavy element studies. These catcher materials shall serve as connection between production and chemical investigation of superheavy elements (SHE) at vacuum conditions. The diffusion constants and activation energies of diffusion have been extrapolated for various catcher materials using an atomic volume based model. Release rates can now be estimated for predefined experimental conditions using the determined diffusion values. The potential release behavior of the volatile SHE Cn (E112), E113, Fl (E114), E115, and Lv (E116) from polycrystalline, metallic foils of Ni, Y, Zr, Nb, Mo, Hf, Ta, and W is predicted. Example calculations showed that Zr is the best suited material in terms of on-line release efficiency and long-term operation stability. If higher temperatures up to 2773 K are applicable, tungsten is suggested to be the material of choice for such experiments.
Resumo:
Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework1. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4–0.5 °C by AD 2300; on top of 0.8–1.0 °C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22–27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.
Resumo:
Most empirical studies support a decline in speciation rates through time, although evidence for constant speciation rates also exists. Declining rates have been explained by invoking pre-existing niches, whereas constant rates have been attributed to non-adaptive processes such as sexual selection and mutation. Trends in speciation rate and the processes underlying it remain unclear, representing a critical information gap in understanding patterns of global diversity. Here we show that the temporal trend in the speciation rate can also be explained by frequency-dependent selection. We construct a frequency-dependent and DNA sequence-based model of speciation. We compare our model to empirical diversity patterns observed for cichlid fish and Darwin's finches, two classic systems for which speciation rates and richness data exist. Negative frequency-dependent selection predicts well both the declining speciation rate found in cichlid fish and explains their species richness. For groups like the Darwin's finches, in which speciation rates are constant and diversity is lower, speciation rate is better explained by a model without frequency-dependent selection. Our analysis shows that differences in diversity may be driven by incipient species abundance with frequency-dependent selection. Our results demonstrate that genetic-distance-based speciation and frequency-dependent selection are sufficient to explain the high diversity observed in natural systems and, importantly, predict decay through time in speciation rate in the absence of pre-existing niches.
Resumo:
The aim of this study was to develop a GST-based methodology for accurately measuring the degree of transverse isotropy in trabecular bone. Using femoral sub-regions scanned in high-resolution peripheral QCT (HR-pQCT) and clinical-level-resolution QCT, trabecular orientation was evaluated using the mean intercept length (MIL) and the gradient structure tensor (GST) on the HR-pQCT and QCT data, respectively. The influence of local degree of transverse isotropy (DTI) and bone mineral density (BMD) was incorporated into the investigation. In addition, a power based model was derived, rendering a 1:1 relationship between GST and MIL eigenvalues. A specific DTI threshold (DTI thres) was found for each investigated size of region of interest (ROI), above which the estimate of major trabecular direction of the GST deviated no more than 30° from the gold standard MIL in 95% of the remaining ROIs (mean error: 16°). An inverse relationship between ROI size and DTI thres was found for discrete ranges of BMD. A novel methodology has been developed, where transversal isotropic measures of trabecular bone can be obtained from clinical QCT images for a given ROI size, DTI thres and power coefficient. Including DTI may improve future clinical QCT finite-element predictions of bone strength and diagnoses of bone disease.
Resumo:
One of the current challenges in evolutionary ecology is understanding the long-term persistence of contemporary-evolving predator–prey interactions across space and time. To address this, we developed an extension of a multi-locus, multi-trait eco-evolutionary individual-based model that incorporates several interacting species in explicit landscapes. We simulated eco-evolutionary dynamics of multiple species food webs with different degrees of connectance across soil-moisture islands. A broad set of parameter combinations led to the local extinction of species, but some species persisted, and this was associated with (1) high connectance and omnivory and (2) ongoing evolution, due to multi-trait genetic variability of the embedded species. Furthermore, persistence was highest at intermediate island distances, likely because of a balance between predation-induced extinction (strongest at short island distances) and the coupling of island diversity by top predators, which by travelling among islands exert global top-down control of biodiversity. In the simulations with high genetic variation, we also found widespread trait evolutionary changes indicative of eco-evolutionary dynamics. We discuss how the ever-increasing computing power and high-resolution data availability will soon allow researchers to start bridging the in vivo–in silico gap.
Resumo:
While most previous research has considered public service motivation (PSM) as the only motivational factor predicting (public) job choice, the authors present a novel, rational choice-based model which includes three motivational dimensions: extrinsic, enjoyment-based intrinsic and prosocial intrinsic. Besides providing more accurate person-job fit predictions, this new approach fills a significant research gap and facilitates future theory building.
Resumo:
Facilitation is a major force shaping the structure and diversity of plant communities in terrestrial ecosystems. Detecting positive plant–plant interactions relies on the combination of field experimentation and the demonstration of spatial association between neighboring plants. This has often restricted the study of facilitation to particular sites, limiting the development of systematic assessments of facilitation over regional and global scales. Here we explore whether the frequency of plant spatial associations detected from high-resolution remotely sensed images can be used to infer plant facilitation at the community level in drylands around the globe. We correlated the information from remotely sensed images freely available through Google Earth with detailed field assessments, and used a simple individual-based model to generate patch-size distributions using different assumptions about the type and strength of plant–plant interactions. Most of the patterns found from the remotely sensed images were more right skewed than the patterns from the null model simulating a random distribution. This suggests that the plants in the studied drylands show stronger spatial clustering than expected by chance. We found that positive plant co-occurrence, as measured in the field, was significantly related to the skewness of vegetation patch-size distribution measured using Google Earth images. Our findings suggest that the relative frequency of facilitation may be inferred from spatial pattern signals measured from remotely sensed images, since facilitation often determines positive co-occurrence among neighboring plants. They pave the road for a systematic global assessment of the role of facilitation in terrestrial ecosystems. Read More: http://www.esajournals.org/doi/10.1890/14-2358.1
Resumo:
BACKGROUND AND AIMS Hepatitis C (HCV) is a leading cause of morbidity and mortality in people who live with HIV. In many countries, access to direct acting antiviral agents to treat HCV is restricted to individuals with advanced liver disease (METAVIR stage F3 or F4). Our goal was to estimate the long term impact of deferring HCV treatment for men who have sex with men (MSM) who are coinfected with HIV and often have multiple risk factors for liver disease progression. METHODS We developed an individual-based model of liver disease progression in HIV/HCV coinfected men who have sex with men. We estimated liver-related morbidity and mortality as well as the median time spent with replicating HCV infection when individuals were treated in liver fibrosis stages F0, F1, F2, F3 or F4 on the METAVIR scale. RESULTS The percentage of individuals who died of liver-related complications was 2% if treatment was initiated in F0 or F1. It increased to 3% if treatment was deferred until F2, 7% if it was deferred until F3 and 22% if deferred until F4. The median time individuals spent with replicating HCV increased from 5 years if treatment was initiated in F2 to almost 15 years if it was deferred until F4. CONCLUSIONS Deferring HCV therapy until advanced liver fibrosis is established could increase liver-related morbidity and mortality in HIV/HCV coinfected individuals, and substantially prolong the time individuals spend with replicating HCV infection.
Resumo:
Monoclonal antibodies (mAbs) inhibiting cytokines have recently emerged as new drug modalities for the treatment of chronic inflammatory diseases. Interleukin-17 (IL-17) is a T-cell-derived central mediator of autoimmunity. Immunization with Qβ-IL-17, a virus-like particle based vaccine, has been shown to produce autoantibodies in mice and was effective in ameliorating disease symptoms in animal models of autoimmunity. To characterize autoantibodies induced by vaccination at the molecular level, we generated mouse mAbs specific for IL-17 and compared them to germline Ig sequences. The variable regions of a selected hypermutated high-affinity anti-IL-17 antibody differed in only three amino acid residues compared to the likely germline progenitor. An antibody, which was backmutated to germline, maintained a surprisingly high affinity (0.5 nM). The ability of the parental hypermutated antibody and the derived germline antibody to block inflammation was subsequently tested in murine models of multiple sclerosis (experimental autoimmune encephalomyelitis), arthritis (collagen-induced arthritis), and psoriasis (imiquimod-induced skin inflammation). Both antibodies were able to delay disease onset and significantly reduced disease severity. Thus, the mouse genome unexpectedly encodes for antibodies with the ability to functionally neutralize IL-17 in vivo.
Resumo:
Attractive business cases in various application fields contribute to the sustained long-term interest in indoor localization and tracking by the research community. Location tracking is generally treated as a dynamic state estimation problem, consisting of two steps: (i) location estimation through measurement, and (ii) location prediction. For the estimation step, one of the most efficient and low-cost solutions is Received Signal Strength (RSS)-based ranging. However, various challenges - unrealistic propagation model, non-line of sight (NLOS), and multipath propagation - are yet to be addressed. Particle filters are a popular choice for dealing with the inherent non-linearities in both location measurements and motion dynamics. While such filters have been successfully applied to accurate, time-based ranging measurements, dealing with the more error-prone RSS based ranging is still challenging. In this work, we address the above issues with a novel, weighted likelihood, bootstrap particle filter for tracking via RSS-based ranging. Our filter weights the individual likelihoods from different anchor nodes exponentially, according to the ranging estimation. We also employ an improved propagation model for more accurate RSS-based ranging, which we suggested in recent work. We implemented and tested our algorithm in a passive localization system with IEEE 802.15.4 signals, showing that our proposed solution largely outperforms a traditional bootstrap particle filter.
Resumo:
Passive positioning systems produce user location information for third-party providers of positioning services. Since the tracked wireless devices do not participate in the positioning process, passive positioning can only rely on simple, measurable radio signal parameters, such as timing or power information. In this work, we provide a passive tracking system for WiFi signals with an enhanced particle filter using fine-grained power-based ranging. Our proposed particle filter provides an improved likelihood function on observation parameters and is equipped with a modified coordinated turn model to address the challenges in a passive positioning system. The anchor nodes for WiFi signal sniffing and target positioning use software defined radio techniques to extract channel state information to mitigate multipath effects. By combining the enhanced particle filter and a set of enhanced ranging methods, our system can track mobile targets with an accuracy of 1.5m for 50% and 2.3m for 90% in a complex indoor environment. Our proposed particle filter significantly outperforms the typical bootstrap particle filter, extended Kalman filter and trilateration algorithms.