32 resultados para Particle and pore radii distributions
Resumo:
ABSTRACT: Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects.Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be detected under controlled experimental conditions. Transgenic mice (Apo E -/-), known to have high base line levels of oxidative stress, were exposed by inhalation to well characterized, concentrated ambient air pollution. Morphometric analysis of the CNS indicated unequivocally that the brain is a critical target for PM exposure and implicated oxidative stress as a predisposing factor that links PM exposure and susceptibility to neurodegeneration.Together, these data present evidence for potential translocation of ambient particles on organs distant from the lung and the neurodegenerative consequences of exposure to air pollutants.
Resumo:
ABSTRACT: BACKGROUND: Experimental studies provide evidence that inhaled nanoparticles may translocate over the airspace epithelium and cause increased cellular inflammation. Little is known, however, about the dependence of particle size or material on translocation characteristics, inflammatory response and intracellular localization. RESULTS: Using a triple cell co-culture model of the human airway wall composed of epithelial cells, macrophages and dendritic cells we quantified the entering of fine (1 mum) and nano-sized (0.078 mum) polystyrene particles by laser scanning microscopy. The number distribution of particles within the cell types was significantly different between fine and nano-sized particles suggesting different translocation characteristics. Analysis of the intracellular localization of gold (0.025 mum) and titanium dioxide (0.02-0.03 mum) nanoparticles by energy filtering transmission electron microscopy showed differences in intracellular localization depending on particle composition. Titanium dioxide nanoparticles were detected as single particles without membranes as well as in membrane-bound agglomerations. Gold nanoparticles were found inside the cells as free particles only. The potential of the different particle types (different sizes and different materials) to induce a cellular response was determined by measurements of the tumour necrosis factor-alpha in the supernatants. We measured a 2-3 fold increase of tumour necrosis factor-alpha in the supernatants after applying 1 mum polystyrene particles, gold nanoparticles, but not with polystyrene and titanium dioxide nanoparticles. CONCLUSION: Quantitative laser scanning microscopy provided evidence that the translocation and entering characteristics of particles are size-dependent. Energy filtering transmission electron microscopy showed that the intracellular localization of nanoparticles depends on the particle material. Both particle size and material affect the cellular responses to particle exposure as measured by the generation of tumour necrosis factor-alpha.
Resumo:
ABSTRACT: BACKGROUND: Translocation of nanoparticles (NP) from the pulmonary airways into other pulmonary compartments or the systemic circulation is controversially discussed in the literature. In a previous study it was shown that titanium dioxide (TiO2) NP were "distributed in four lung compartments (air-filled spaces, epithelium/endothelium, connective tissue, capillary lumen) in correlation with compartment size". It was concluded that particles can move freely between these tissue compartments. To analyze whether the distribution of TiO2 NP in the lungs is really random or shows a preferential targeting we applied a newly developed method for comparing NP distributions. METHODS: Rat lungs exposed to an aerosol containing TiO2 NP were prepared for light and electron microscopy at 1 h and at 24 h after exposure. Numbers of TiO2 NP associated with each compartment were counted using energy filtering transmission electron microscopy. Compartment size was estimated by unbiased stereology from systematically sampled light micrographs. Numbers of particles were related to compartment size using a relative deposition index and chi-squared analysis. RESULTS: Nanoparticle distribution within the four compartments was not random at 1 h or at 24 h after exposure. At 1 h the connective tissue was the preferential target of the particles. At 24 h the NP were preferentially located in the capillary lumen. CONCLUSION: We conclude that TiO2 NP do not move freely between pulmonary tissue compartments, although they can pass from one compartment to another with relative ease. The residence time of NP in each tissue compartment of the respiratory system depends on the compartment and the time after exposure. It is suggested that a small fraction of TiO2 NP are rapidly transported from the airway lumen to the connective tissue and subsequently released into the systemic circulation.
Resumo:
BACKGROUND: Engineered nanoparticles are becoming increasingly ubiquitous and their toxicological effects on human health, as well as on the ecosystem, have become a concern. Since initial contact with nanoparticles occurs at the epithelium in the lungs (or skin, or eyes), in vitro cell studies with nanoparticles require dose-controlled systems for delivery of nanoparticles to epithelial cells cultured at the air-liquid interface. RESULTS: A novel air-liquid interface cell exposure system (ALICE) for nanoparticles in liquids is presented and validated. The ALICE generates a dense cloud of droplets with a vibrating membrane nebulizer and utilizes combined cloud settling and single particle sedimentation for fast (~10 min; entire exposure), repeatable (<12%), low-stress and efficient delivery of nanoparticles, or dissolved substances, to cells cultured at the air-liquid interface. Validation with various types of nanoparticles (Au, ZnO and carbon black nanoparticles) and solutes (such as NaCl) showed that the ALICE provided spatially uniform deposition (<1.6% variability) and had no adverse effect on the viability of a widely used alveolar human epithelial-like cell line (A549). The cell deposited dose can be controlled with a quartz crystal microbalance (QCM) over a dynamic range of at least 0.02-200 mug/cm(2). The cell-specific deposition efficiency is currently limited to 0.072 (7.2% for two commercially available 6-er transwell plates), but a deposition efficiency of up to 0.57 (57%) is possible for better cell coverage of the exposure chamber. Dose-response measurements with ZnO nanoparticles (0.3-8.5 mug/cm(2)) showed significant differences in mRNA expression of pro-inflammatory (IL-8) and oxidative stress (HO-1) markers when comparing submerged and air-liquid interface exposures. Both exposure methods showed no cellular response below 1 mug/cm(2 )ZnO, which indicates that ZnO nanoparticles are not toxic at occupationally allowed exposure levels. CONCLUSION: The ALICE is a useful tool for dose-controlled nanoparticle (or solute) exposure of cells at the air-liquid interface. Significant differences between cellular response after ZnO nanoparticle exposure under submerged and air-liquid interface conditions suggest that pharmaceutical and toxicological studies with inhaled (nano-)particles should be performed under the more realistic air-liquid interface, rather than submerged cell conditions.
Resumo:
The Effingen Member is a low-permeability rock unit of Oxfordian age (ca. 160 Ma) that occurs across northern Switzerland. It comprises sandy calcareous marls and (argillaceous) limestones. This report describes the hydrogeochemistry, mineralogy and supporting physical properties of the Effingen Member in three boreholes in the Jura-Südfuss area: Oftringen, Gösgen and Küttigen, where it is 220–240 m thick. The top of the Effingen Member is at 420, 66 and 32 m depths at the three sites. Core materials are available from Oftringen and Gösgen, whereas information from Küttigen is limited to cuttings, in-situ hydrogeological testing and geophysical logging. Hydrogeological boundaries of the Effingen Member vary between locations. Ground-water flows were identified during drilling at the top (Geissberg Member), but not at the base, of the Effingen Member at Oftringen, at the base (Hauptrogenstein Formation) of the Effingen Member at Gösgen, and in a limestone layer (Gerstenhübel unit) within the Effingen Member at Küttigen. The marls and limestones of the Effingen Member have carbonate contents of 46–91 wt.-% and clay-mineral contents of 5–37 wt.-%. Pyrite contents are up to 1.6 wt.-%, but no sulphate minerals were detected by routine analyses. Clay minerals are predominantly mixed-layer illite-smectite, illite and kaolinite, with sporadic traces of chlorite and smectite. Veins filled with calcite ± celestite occur through the Effingen Member at Oftringen but not at Gösgen or Küttigen. They formed at 50–70 ºC from externally derived fluids, probably of Miocene age. Water contents are 0.7–4.2 wt.-%, corresponding to a water-loss porosity range of 1.9–10.8 vol.-%. Specific surface areas, measured by the BET method, are 2–30 m2/g, correlating with clay-mineral contents. Water activity has been measured and yielded surprisingly low values down to 0.8. These cannot be explained by pore-water salinity alone and include other effects, such as changes in the fabric due to stress release or partial saturation. Observed variations in measurements are not fully understood. Cation exchange capacity (CEC) and exchangeable cation populations have been studied by the Ni-en method. CEC, derived from the consumption of the index cation Ni, is 9–99 meq/kgrock at a solid:liquid ratio of 1, correlating with the clay-mineral content. Cation concentrations in Ni-en extract solutions are in the order Na+≥Ca2+>Mg2+>K+>Sr2+. However, the analytical results from the Ni-en extractions have additional contributions from cations originating from pore water and from mineral dissolution reactions that occurred during extraction, and it was not possible to reliably quantify these contributions. Therefore, in-situ cation populations and selectivity coefficients could not be derived. A suite of methods have been used for characterising the chemical compositions of pore waters in the Effingen Member. Advective displacement was used on one sample from each Oftringen and Gösgen and is the only method that produces results that approach complete hydrochemical compositions. Aqueous extraction was used on core samples from these two boreholes and gives data only for Cl- and, in some cases, Br-. Out-diffusion was used on core samples from Oftringen and similarly gives data for Cl- and Br- only. For both aqueous extraction and out-diffusion, reaction of the experimental water with rock affected concentrations of cations, SO42 and alkalinity in experimental solutions. Another method, centrifugation, failed to extract pore water. Stable isotope ratios (δ18O and δ2H) of pore waters in core samples from Oftringen were analysed by the diffusive exchange method and helium contents of pore water in Oftringen samples were extracted for mass spectrometric analysis by quantitative outgassing of preserved core samples. Several lines of evidence indicate that drillcore samples might not have been fully saturated when opened and subsampled in the laboratory. These include comparisons of water-loss porosities with physical porosities, water-activity measurements, and high contents of dissolved gas as inferred from ground-water samples. There is no clear proof of partial saturation and it is unclear whether this might represent in-situ conditions or is due to exsolution of gas due to the pressure release since drilling. Partial saturation would have no impact on the recalculation of pore-water compositions from aqueous extraction experiments using water-loss porosity data. The largest uncertainty in the pore-water Cl- concentrations recalculated from aqueous extraction and out-diffusion experiments is the magnitude of the anion-accessible fraction of water-loss porosity. General experience of clay-mineral rich formations suggests that the anion-accessible porosity fraction is very often about 0.5 and generally in a range of 0.3 to 0.6 and tends to be inversely correlated with clay-mineral contents. Comparisons of the Cl- concentration in pore water obtained by advective displacement with that recalculated from aqueous extraction of an adjacent core sample suggests a fraction of 0.27 for an Oftringen sample, whereas the same procedure for a Gösgen sample suggests a value of 0.64. The former value for anion-accessible porosity fraction is presumed to be unrepresentative given the local mineralogical heterogeneity at that depth. Through-diffusion experiments with HTO and 36Cl- suggest that the anion-accessible porosity fraction in the Effingen Member at Oftringen and Gösgen is around 0.5. This value is proposed as a typical average for rocks of the Effingen Member, bearing in mind that it varies on a local scale in response to the heterogeneity of lithology and pore-space architecture. The substantial uncertainties associated with the approaches to estimating anion-accessible porosity propagate into the calculated values of in-situ pore-water Cl- concentrations. On the basis of aqueous extraction experiments, and using an anion-accessible porosity fraction of 0.5, Cl- concentrations in the Effingen Member at Oftringen reach a maximum of about 14 g/L in the centre. Cl- decreases upwards and downwards from that, forming a curved depth profile. Cl- contents in the Effingen Member at Gösgen increase with depth from about 3.5 g/L to about 14 g/L at the base of the cored profile (which corresponds to the centre of the formation). Out-diffusion experiments were carried out on four samples from Oftringen, distributed through the Effingen Member. Recalculated Cl- concentrations are similar to those from aqueous extraction for 3 out of the 4 samples, and somewhat lower for one sample. Concentrations of other components, i.e. Na+, K+, Ca2+, Mg2+, Sr2+, SO42- and HCO3- cannot be obtained from the aqueous extraction and out-diffusion experimental data because of mineral dissolution and cation exchange reactions during the experiments. Pore-water pH also is not constrained by those extraction experiments. The only experimental approach to obtain complete pore-water compositions for samples from Oftringen and Gösgen is advective displacement of pore water. The sample from Oftringen used for this experiment is from 445 m depth in the upper part of the Effingen Member and gave eluate with 16.5 g/L Cl- whereas aqueous extraction from a nearby sample indicated about 9 g/L Cl-. The sample from Gösgen used for advective displacement is from 123 m depth in the centre of the Effingen Member sequence and gave eluate with about 9 g/L Cl- whereas aqueous extraction gave 11.5 g/L Cl-. In both cases the pore waters have Na-(Ca)-Cl compositions and SO42- concentrations of about 1.1 g/L. The Gösgen sample has a Br/Cl ratio similar to that of sea water, whereas this ratio is lower for the Oftringen sample. Taking account of uncertainties in the applied experimental approaches, it is reasonable to place an upper limit of ca. 20 g/L on Cl- concentration for pore water in the Effingen Member in this area. There are major discrepancies between pore-water SO42- concentrations inferred from aqueous extraction or out-diffusion experiments and those obtained from advective displacement in both the Oftringen and Gösgen cases. A general conclusion is that all or at least part of the discrepancies are attributable to perturbation of the sulphur system and enhancement of SO42- by sulphate mineral dissolution and possibly minor pyrite oxidation during aqueous extraction and out-diffusion. Therefore, data for SO42- calculated from those pore-water sampling methods are considered not to be representative of in-situ conditions. A reference pore-water composition was defined for the Effingen Member in the Jura Südfuss area. It represents the probable upper limits of Cl- contents and corresponding anion and cation concentrations that are reasonably constrained by experimental data. Except for Cl- and possibly Na+ concentrations, this composition is poorly constrained especially with respect to SO42- and Ca2+ concentrations, and pH and alkalinity. Stable isotope compositions, δ18O and δ2H, of pore waters in the Effingen Member at Oftringen plot to the right of the meteoric water line, suggesting that 18O has been enriched by water-rock exchange, which indicates that the pore waters have a long residence time. A long residence time of pore water is supported by the level of dissolved 4He that has accumulated in pore water of the Effingen Member at Oftringen. This is comparable with, or slightly higher than, the amounts of 4He in the Opalinus Clay at Benken. Ground waters were sampled from flowing zones intersected by boreholes at the three locations. The general interpretation is that pore waters and ground-water solutes may have similar origins in Mesozoic and Cenozoic brackish-marine formations waters, but ground-water solutes have been diluted rather more than pore waters by ingress of Tertiary and Quaternary meteoric waters. The available hydrochemical data for pore waters from the Effingen Member at these three locations in the Jura-Südfuss area suggest that the geochemical system evolved slowly over geological periods of time, in which diffusion was an important mechanism of solute transport. The irregularity of Cl- and δ18O profiles and spatial variability of advective ground-water flows in the Malm-Dogger system suggests that palaeohydrogeological and hydrochemical responses to changing tectonic and surface environmental conditions were complex.
Resumo:
BACKGROUND: Inhalative nanocarriers for local or systemic therapy are promising. Gold nanoparticles (AuNP) have been widely considered as candidate material. Knowledge about their interaction with the lungs is required, foremost their uptake by surface macrophages and epithelial cells.Diseased lungs are of specific interest, since these are the main recipients of inhalation therapy. We, therefore, used Scnn1b-transgenic (Tg) mice as a model of chronic obstructive pulmonary disease (COPD) and compared uptake and localization of inhaled AuNP in surface macrophages and lung tissue to wild-type (Wt) mice. METHODS: Scnn1b-Tg and Wt mice inhaled a 21-nm AuNP aerosol for 2 h. Immediately (0 h) or 24 h thereafter, bronchoalveolar lavage (BAL) macrophages and whole lungs were prepared for stereological analysis of AuNP by electron microscopy. RESULTS: AuNP were mainly found as singlets or small agglomerates of <= 100 nm diameter, at the epithelial surface and within lung-surface structures. Macrophages contained also large AuNP agglomerates (> 100 nm). At 0 h after aerosol inhalation, 69.2+/-4.9% AuNP were luminal, i.e. attached to the epithelial surface and 24.0+/-5.9% in macrophages in Scnn1b-Tg mice. In Wt mice, 35.3+/-32.2% AuNP were on the epithelium and 58.3+/-41.4% in macrophages. The percentage of luminal AuNP decreased from 0 h to 24 h in both groups. At 24 h, 15.5+/-4.8% AuNP were luminal, 21.4+/-14.2% within epithelial cells and 63.0+/-18.9% in macrophages in Scnn1b-Tg mice. In Wt mice, 9.5+/-5.0% AuNP were luminal, 2.2+/-1.6% within epithelial cells and 82.8+/-0.2% in macrophages. BAL-macrophage analysis revealed enhanced AuNP uptake in Wt animals at 0 h and in Scnn1b-Tg mice at 24 h, confirming less efficient macrophage uptake and delayed clearance of AuNP in Scnn1b-Tg mice. CONCLUSIONS: Inhaled AuNP rapidly bound to the alveolar epithelium in both Wt and Scnn1b-Tg mice. Scnn1b-Tg mice showed less efficient AuNP uptake by surface macrophages and concomitant higher particle internalization by alveolar type I epithelial cells compared to Wt mice. This likely promotes AuNP depth translocation in Scnn1b-Tg mice, including enhanced epithelial targeting. These results suggest AuNP nanocarrier delivery as successful strategy for therapeutic targeting of alveolar epithelial cells and macrophages in COPD.
Resumo:
BACKGROUND: Due to its antibacterial properties, silver (Ag) has been used in more consumer products than any other nanomaterial so far. Despite the promising advantages posed by using Ag-nanoparticles (NPs), their interaction with mammalian systems is currently not fully understood. An exposure route via inhalation is of primary concern for humans in an occupational setting. Aim of this study was therefore to investigate the potential adverse effects of aerosolised Ag-NPs using a human epithelial airway barrier model composed of A549, monocyte derived macrophage and dendritic cells cultured in vitro at the air-liquid interface. Cell cultures were exposed to 20 nm citrate-coated Ag-NPs with a deposition of 30 and 278 ng/cm2 respectively and incubated for 4 h and 24 h. To elucidate whether any effects of Ag-NPs are due to ionic effects, Ag-Nitrate (AgNO3) solutions were aerosolised at the same molecular mass concentrations. RESULTS: Agglomerates of Ag-NPs were detected at 24 h post exposure in vesicular structures inside cells but the cellular integrity was not impaired upon Ag-NP exposures. Minimal cytotoxicity, by measuring the release of lactate dehydrogenase, could only be detected following a higher concentrated AgNO3-solution. A release of pro-inflammatory markers TNF-alpha and IL-8 was neither observed upon Ag-NP and AgNO3 exposures as well as was not affected when cells were pre-stimulated with lipopolysaccharide (LPS). Also, an induction of mRNA expression of TNF-alpha and IL-8, could only be observed for the highest AgNO3 concentration alone or even significantly increased when pre-stimulated with LPS after 4 h. However, this effect disappeared after 24 h. Furthermore, oxidative stress markers (HMOX-1, SOD-1) were expressed after 4 h in a concentration dependent manner following AgNO3 exposures only. CONCLUSIONS: With an experimental setup reflecting physiological exposure conditions in the human lung more realistic, the present study indicates that Ag-NPs do not cause adverse effects and cells were only sensitive to high Ag-ion concentrations. Chronic exposure scenarios however, are needed to reveal further insight into the fate of Ag-NPs after deposition and cell interactions.
Resumo:
BACKGROUND Persons with cystic fibrosis (CF) are at-risk for health effects from ambient air pollution but little is known about the interaction of nanoparticles (NP) with CF lungs. Here we study the distribution of inhaled NP in a murine CF model and aim to reveal mechanisms contributing to adverse effects of inhaled particles in susceptible populations. METHODS Chloride channel defective CftrTgH (neoim) Hgu mice were used to analyze lung function, lung distribution and whole body biokinetics of inhaled NP, and inflammatory responses after intratracheal administration of NP. Distribution of 20-nm titanium dioxide NP in lungs was assessed on ultrathin sections immediately and 24 h after a one-hour NP inhalation. NP biokinetics was deduced from total and regional lung deposition and from whole body translocation of inhaled 30-nm iridium NP within 24 h after aerosol inhalation. Inflammatory responses were assessed within 7 days after carbon NP instillation. RESULTS Cftr mutant females had moderately reduced lung compliance and slightly increased airway resistance compared to wild type mice. We found no genotype dependent differences in total, regional and head deposition or in secondary-organ translocation of inhaled iridium NP. Titanium dioxide inhalation resulted in higher NP uptake by alveolar epithelial cells in Cftr mutants. Instillation of carbon NP induced a comparable acute and transient inflammatory response in both genotypes. The twofold increase of bronchoalveolar lavage (BAL) neutrophils in Cftr mutant compared to wild type mice at day 3 but not at days 1 and 7, indicated an impaired capacity in inflammation resolution in Cftr mutants. Concomitant to the delayed decline of neutrophils, BAL granulocyte-colony stimulating factor was augmented in Cftr mutant mice. Anti-inflammatory 15-hydroxyeicosatetraenoic acid was generally significantly lower in BAL of Cftr mutant than in wild type mice. CONCLUSIONS Despite lacking alterations in lung deposition and biokinetics of inhaled NP, and absence of significant differences in lung function, higher uptake of NP by alveolar epithelial cells and prolonged, acute inflammatory responses to NP exposure indicate a moderately increased susceptibility of lungs to adverse effects of inhaled NP in Cftr mutant mice and provides potential mechanisms for the increased susceptibility of CF patients to air pollution.
Resumo:
A search has been performed for photons originating in the decay of a neutral long-lived particle, exploiting the capabilities of the ATLAS electromagnetic calorimeter to make precise measurements of the flight direction of photons, as well as the calorimeter's excellent time resolution. The search has been made in the diphoton plus missing transverse energy final state, using the full data sample of 4.8 fb(-1) of 7 TeV proton-proton collisions collected in 2011 with the ATLAS detector at the LHC. No excess is observed above the background expected from Standard Model processes. The results are used to set exclusion limits in the context of gauge mediated supersymmetry breaking models, with the lightest neutralino being the next-to-lightest supersymmetric particle and decaying with a lifetime in excess of 0.25 ns into a photon and a gravitino.
Resumo:
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.
Resumo:
A search has been performed, using the full 20.3 fb −1 data sample of 8 TeV proton-proton collisions collected in 2012 with the ATLAS detector at the LHC, for photons originating from a displaced vertex due to the decay of a neutral long-lived particle into a photon and an invisible particle. The analysis investigates the diphoton plus missing transverse momentum final state, and is therefore most sensitive to pair production of long-lived particles. The analysis technique exploits the capabilities of the ATLAS electromagnetic calorimeter to make precise measurements of the flight direction, as well as the time of flight, of photons. No excess is observed over the Standard Model predictions for background. Exclusion limits are set within the context of gauge mediated supersymmetry breaking models, with the lightest neutralino being the next-to-lightest supersymmetric particle and decaying into a photon and gravitino with a lifetime in the range from 250 ps to about 100 ns.
Resumo:
A search is presented for direct top squark pair production using events with at least two leptons including a same-flavour opposite-sign pair with invariant mass consistent with the Z boson mass, jets tagged as originating from b-quarks and missing transverse momentum. The analysis is performed with proton–proton collision data at √ s = 8 TeV collected with the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of 20.3 fb−1. No excess beyond the Standard Model expectation is observed. Interpretations of the results are provided in models based on the direct pair production of the heavier top squark state (˜t2) followed by the decay to the lighter top squark state (˜t1) via ˜t2 → Z ˜t1, and for ˜t1 pair production in natural gaugemediated supersymmetry breaking scenarios where the neutralino (˜χ 01 ) is the next-to-lightest supersymmetric particle and decays producing a Z boson and a gravitino ( ˜G ) via the ˜χ 01→ Z ˜G process.
Resumo:
The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a highpressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the L/E behaviour, and distinguishing effects arising from δCP and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (MH) and discovering CP-violation (CPV), using a conventional neutrino beam from the CERN SPS with a power of 750 kW. We use conservative assumptions on the knowledge of oscillation parameter priors and systematic uncertainties. The impact of each systematic error and the precision of oscillation prior is shown. We demonstrate that the first stage of LBNO can determine unambiguously the MH to > 5δ C.L. over the whole phase space. We show that the statistical treatment of the experiment is of very high importance, resulting in the conclusion that LBNO has ~ 100% probability to determine the MH in at most 4-5 years of running. Since the knowledge of MH is indispensable to extract δCP from the data, the first LBNO phase can convincingly give evidence for CPV on the 3δ C.L. using today’s knowledge on oscillation parameters and realistic assumptions on the systematic uncertainties.
Resumo:
Four different literature parameterizations for the formation and evolution of urban secondary organic aerosol (SOA) frequently used in 3-D models are evaluated using a 0-D box model representing the Los Angeles metropolitan region during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign. We constrain the model predictions with measurements from several platforms and compare predictions with particle- and gas-phase observations from the CalNex Pasadena ground site. That site provides a unique opportunity to study aerosol formation close to anthropogenic emission sources with limited recirculation. The model SOA that formed only from the oxidation of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. The Community Multiscale Air Quality (WRF-CMAQ) model (version 5.0.1) provides excellent predictions of secondary inorganic particle species but underestimates the observed SOA mass by a factor of 25 when an older VOC-only parameterization is used, which is consistent with many previous model–measurement comparisons for pre-2007 anthropogenic SOA modules in urban areas. Including SOA from primary semi-volatile and intermediate-volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model–measurement agreement for mass concentration. The results from the three parameterizations show large differences (e.g., a factor of 3 in SOA mass) and are not well constrained, underscoring the current uncertainties in this area. Our results strongly suggest that other precursors besides VOCs, such as P-S/IVOCs, are needed to explain the observed SOA concentrations in Pasadena. All the recent parameterizations overpredict urban SOA formation at long photochemical ages (3 days) compared to observations from multiple sites, which can lead to problems in regional and especially global modeling. However, reducing IVOC emissions by one-half in the model to better match recent IVOC measurements improves SOA predictions at these long photochemical ages. Among the explicitly modeled VOCs, the precursor compounds that contribute the greatest SOA mass are methylbenzenes. Measured polycyclic aromatic hydrocarbons (naphthalenes) contribute 0.7% of the modeled SOA mass. The amounts of SOA mass from diesel vehicles, gasoline vehicles, and cooking emissions are estimated to be 16–27, 35–61, and 19–35 %, respectively, depending on the parameterization used, which is consistent with the observed fossil fraction of urban SOA, 71(+-3) %. The relative contribution of each source is uncertain by almost a factor of 2 depending on the parameterization used. In-basin biogenic VOCs are predicted to contribute only a few percent to SOA. A regional SOA background of approximately 2.1 μgm-3 is also present due to the long-distance transport of highly aged OA, likely with a substantial contribution from regional biogenic SOA. The percentage of SOA from diesel vehicle emissions is the same, within the estimated uncertainty, as reported in previous work that analyzed the weekly cycles in OA concentrations (Bahreini et al., 2012; Hayes et al., 2013). However, the modeling work presented here suggests a strong anthropogenic source of modern carbon in SOA, due to cooking emissions, which was not accounted for in those previous studies and which is higher on weekends. Lastly, this work adapts a simple two-parameter model to predict SOA concentration and O/C from urban emissions. This model successfully predicts SOA concentration, and the optimal parameter combination is very similar to that found for Mexico City. This approach provides a computationally inexpensive method for predicting urban SOA in global and climate models. We estimate pollution SOA to account for 26 Tg yr-1 of SOA globally, or 17% of global SOA, one third of which is likely to be non-fossil.
Resumo:
High-pressure mechanical squeezing was applied to sample pore waters from a sequence of highly indurated and overconsolidated sedimentary rocks in a drillcore from a deep borehole in NE Switzerland. The rocks are generally rich in clay minerals (28–71 wt.%), with low water contents of 3.5–5.6 wt.%, resulting in extremely low hydraulic conductivities of 10− 14–10− 13 m/s. First pore-water samples could generally be taken at 200 MPa, and further aliquots were obtained at 300, 400 and 500 MPa. Chemical and isotopic compositions of squeezed waters evolve with increasing pressure. Decreasing concentrations of Cl−, Br−, Na+ and K+ are explained by ion filtration due to the collapse of the pore space during squeezing. Increasing concentrations of Ca2 + and Mg2 + are considered to be a consequence of pressure-dependent solubilities of carbonate minerals in combination with sorption/desorption reactions. The pressure dependence was studied by model calculations considering equilibrium with carbonate minerals and the exchanger population on clay surfaces, and the trends observed in the experiments could be confirmed. The compositions of the squeezed waters were compared with results of independent methods, such as aqueous extraction and in-situ sampling of ground and pore waters. On this basis, it is concluded that the chemical and isotopic composition of pore water squeezed at the lowest pressure of 200 MPa closely represents that of the in-situ pore water. The feasibility of sampling pore waters with water contents down to 3.5 wt.% and possibly less opens new perspectives for studies targeted at palaeo-hydrogeological investigations using pore-water compositions in aquitards as geochemical archives.