29 resultados para Pancreatic ß-cell


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been established that successful pancreas transplantation in Type 1 (insulin-dependent) diabetic patients results in normal but exaggerated phasic glucose-induced insulin secretion, normal intravenous glucose disappearance rates, improved glucose recovery from insulin-induced hypoglycaemia, improved glucagon secretion during insulin-induced hypoglycaemia, but no alterations in pancreatic polypeptide responses to hypoglycaemia. However, previous reports have not segregated the data in terms of the length of time following successful transplantation and very little prospective data collected over time in individual patients has been published. This article reports that in general there are no significant differences in the level of improvement when comparing responses as early as three months post-operatively up to as long as two years post-operatively when examining the data cross-sectionally in patients who have successfully maintained their allografts. Moreover, this remarkable constancy in pancreatic islet function is also seen in a smaller group of patients who have been examined prospectively at various intervals post-operatively. It is concluded that successful pancreas transplantation results in remarkable improvements in Alpha and Beta cell but not PP cell function that are maintained for at least one to two years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To characterize pancreatic endocrine secretion and to examine interrelationships among alterations in alpha, beta, and pancreatic polypeptide cell function in patients with cystic fibrosis (CF), we studied 19 patients with exocrine insufficiency (EXO), including 9 receiving insulin therapy (EXO-IT); 10 patients with no exocrine insufficiency (NEXO); and 10 normal control subjects. First-phase C-peptide response to intravenously administered glucose was significantly impaired in CF patients with exocrine insufficiency (EXO-IT = 0.02 +/- 0.01; EXO = 0.11 +/- 0.02; NEXO = 0.25 +/- 0.05; control subjects = 0.30 +/- 0.04 nmol/L). Lowering fasting glucose levels with exogenous insulin administration in EXO-IT did not improve beta cell responsivity to glucose. The C-peptide response to arginine was less impaired (EXO-IT = 0.12 +/- 0.02; EXO = 0.15 +/- 0.02; NEXO = 0.23 +/- 0.06; control subjects = 0.28 +/- 0.04 nmol/L). Alpha cell function, measured as peak glucagon secretion in response to hypoglycemia, was diminished in EXO but not NEXO (EXO-IT = 21 +/- 10; EXO = 62 +/- 19; NEXO = 123 +/- 29; control subjects = 109 +/- 12 ng/L). Despite diminished glucagon response, EXO patients recovered normally from hypoglycemia. Peak pancreatic polypeptide response to hypoglycemia distinguished CF patients with exocrine insufficiency from those without exocrine insufficiency (EXO-IT = 3 +/- 2; EXO = 3 +/- 1; NEXO = 226 +/- 68; control subjects = 273 +/- 100 pmol/L). Thus CF patients with exocrine disease have less alpha, beta, and pancreatic polypeptide cell function than CF patients without exocrine disease. These data suggest either that exocrine disease causes endocrine dysfunction in CF or that a common pathogenic process simultaneously and independently impairs exocrine and endocrine function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Apoptosis of pancreatic beta-cells is critical in both diabetes development and failure of islet transplantation. The role in these processes of pro- and antiapoptotic Bcl-2 family proteins, which regulate apoptosis by controlling mitochondrial integrity, remains poorly understood. We investigated the role of the BH3-only protein Bid and the multi-BH domain proapoptotic Bax and Bak, as well as prosurvival Bcl-2, in beta-cell apoptosis. RESEARCH DESIGN AND METHODS: We isolated islets from mice lacking Bid, Bax, or Bak and those overexpressing Bcl-2 and exposed them to Fas ligand, tumor necrosis factor (TNF)-alpha, and proinflammatory cytokines or cytotoxic stimuli that activate the mitochondrial apoptotic pathway (staurosporine, etoposide, gamma-radiation, tunicamycin, and thapsigargin). Nuclear fragmentation was measured by flow cytometry. RESULTS: Development and function of islets were not affected by loss of Bid, and Bid-deficient islets were as susceptible as wild-type islets to cytotoxic stimuli that cause apoptosis via the mitochondrial pathway. In contrast, Bid-deficient islets and those overexpressing antiapoptotic Bcl-2 were protected from Fas ligand-induced apoptosis. Bid-deficient islets were also resistant to apoptosis induced by TNF-alpha plus cycloheximide and were partially resistant to proinflammatory cytokine-induced death. Loss of the multi-BH domain proapoptotic Bax or Bak protected islets partially from death receptor-induced apoptosis. CONCLUSIONS: These results demonstrate that Bid is essential for death receptor-induced apoptosis of islets, similar to its demonstrated role in hepatocytes. This indicates that blocking Bid activity may be useful for protection of islets from immune-mediated attack and possibly also in other pathological states in which beta-cells are destroyed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTEXT: The success of pancreatic islet transplantation depends largely on the capacity of the islet graft to survive the initial phase immediately after transplantation until revascularization is completed. Endothelin-1 (ET-1) is a strong vasoconstrictor which has been involved in solid organ graft failure but is also known to be a potent mitogenic/anti-apoptotic factor which could also potentially enhance the survival of the transplanted islets. OBJECTIVE: Characterization of the endothelin system with regard to a potential endothelin agonist/antagonist treatment. DESIGN: Regulated expression of the endothelin system in human and rat pancreatic islets and beta-cell lines was assessed by means of immunohistochemistry, competition binding studies, western blot, RT-PCR, real-time PCR and transplant studies. RESULTS: ET-1, ETA- and ETB-receptor immunoreactivity was identified in the endocrine cells of human and rat pancreatic islets. The corresponding mRNA was detectable in rat beta-cell lines and isolated rat and human pancreatic islets. Competition binding studies on rat islets revealed binding sites for both receptor types. ET-1 stimulated the phosphorylation of mitogen-activated protein kinase, which was prevented by ETA- and ETB-receptor antagonists. After exposure to hypoxia equal to post-transplant environment oxygen tension, mRNA levels of ET-1 and ETB-receptor of human islets were robustly induced whereas ETA-receptor mRNA did not show significant changes. Immunostaining signals for ET-1 and ETA-receptor of transplanted rat islets were markedly decreased when compared to native pancreatic sections. CONCLUSIONS: In pancreatic islets, ET-1 and its receptors are differentially expressed by hypoxia and after transplantation. Our results provide the biological basis for the study of the potential use of endothelin agonists/antagonists to improve islet transplantation outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pancreatic beta-cell-restricted knockout of the insulin receptor results in hyperglycemia due to impaired insulin secretion, suggesting that this cell is an important target of insulin action. The present studies were undertaken in beta-cell insulin receptor knockout (betaIRKO) mice to define the mechanisms underlying the defect in insulin secretion. On the basis of responses to intraperitoneal glucose, approximately 7-mo-old betaIRKO mice were either diabetic (25%) or normally glucose tolerant (75%). Total insulin content was profoundly reduced in pancreata of mutant mice compared with controls. Both groups also exhibited reduced beta-cell mass and islet number. However, insulin mRNA and protein were similar in islets of diabetic and normoglycemic betaIRKO mice compared with controls. Insulin secretion in response to insulin secretagogues from the isolated perfused pancreas was markedly reduced in the diabetic betaIRKOs and to a lesser degree in the nondiabetic betaIRKO group. Pancreatic islets of nondiabetic betaIRKO animals also exhibited defects in glyceraldehyde- and KCl-stimulated insulin release that were milder than in the diabetic animals. Gene expression analysis of islets revealed a modest reduction of GLUT2 and glucokinase gene expression in both the nondiabetic and diabetic mutants. Taken together, these data indicate that loss of functional receptors for insulin in beta-cells leads primarily to profound defects in postnatal beta-cell growth. In addition, altered glucose sensing may also contribute to defective insulin secretion in mutant animals that develop diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RP1 (synonym: MAPRE2, EB2) is a member of the microtubule binding EB1 protein family, which interacts with APC, a key regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis. CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser(236) in vitro. Stable RP1 expression in cell lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-mimicking point mutant RP1-ASP(236) show a marked decrease of adhesion to endothelial cells under shear stress. Inversely, we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion. Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to surfaces. In summary, RP1 phosphorylation at Ser(236) by CK2 seems to play a significant role in cell adhesion and might initiate new insights in the CK2 and EB1 family protein association.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human insulin gene enhancer-binding protein islet-1 (ISL1) is a transcription factor involved in the differentiation of the neuroendocrine pancreatic cells. Recent studies identified ISL1 as a marker for pancreatic well-differentiated neuroendocrine neoplasms. However, little is known about ISL1 expression in pancreatic poorly differentiated and in extrapancreatic well and poorly differentiated neuroendocrine neoplasms. We studied the immunohistochemical expression of ISL1 in 124 neuroendocrine neoplasms. Among pancreatic neuroendocrine neoplasms, 12/13 with poor differentiation were negative, whereas 5/7 with good differentiation but a Ki67 >20% were positive. In extrapancreatic neuroendocrine neoplasms, strong positivity was found in Merkel cell carcinomas (25/25), pulmonary small cell neuroendocrine carcinomas (21/23), medullary thyroid carcinomas (9/9), paragangliomas/pheochromocytomas (6/6), adrenal neuroblastomas (8/8) and head and neck neuroendocrine carcinomas (4/5), whereas no or only weak staining was recorded in pulmonary carcinoids (3/15), olfactory neuroblastomas (1/4) and basaloid head and neck squamous cell carcinomas (0/15). ISL1 stained the neuroendocrine carcinoma component of 5/8 composite carcinomas and also normal neuroendocrine cells in the thyroid, adrenal medulla, stomach and colorectum. Poorly differentiated neuroendocrine neoplasms, regardless of their ISL1 expression, were usually TP53 positive. Our results show the almost ubiquitous expression of ISL1 in extrapancreatic poorly differentiated neuroendocrine neoplasms and neuroblastic malignancies and its common loss in pancreatic poorly differentiated neuroendocrine neoplasms. These findings modify the role of ISL1 as a marker for pancreatic neuroendocrine neoplasms and suggest that ISL1 has a broader involvement in differentiation and growth of neuroendocrine neoplasms than has so far been assumed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Infection of pancreatic necrosis in necrotizing pancreatitis increases the lethality of patients with acute pancreatitis. To examine mechanisms underlying this clinical observation, we developed and tested a model, in which primary infection of necrosis is achieved in taurocholate-induced pancreatitis in mice. METHODS Sterile necrosis of acute necrotizing pancreatitis was induced by retrograde injection of 4% taurocholate into the common bile duct of Balb/c mice. Primary infection of pancreatic necrosis was induced by coinjecting 10 colony-forming units of Escherichia coli. Animals were killed after 6, 12, 24, 48, and 120 hours, and pancreatic damage and pancreatitis-associated systemic inflammatory response were assessed. RESULTS Mice with pancreatic acinar cell necrosis had an increased bacterial concentration in all tissues and showed sustained bacteremia. Acute pancreatitis was induced only by coinjection of taurocholate and not by bacterial infection alone. Infection of pancreatic necrosis increased pancreatic damage and the pulmonary vascular leak. Serum glucose concentrations serving as a parameter of hepatic function were reduced in mice with infected pancreatic necrosis. CONCLUSIONS Primary infection of pancreatic necrosis with E. coli increases both pancreatic damage and pulmonary and hepatic complications in acute necrotizing pancreatitis in mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperplastic changes of the neuroendocrine cell system may have the potential to evolve into neoplastic diseases. This is particularly the case in the setting of genetically determined and hereditary neuroendocrine tumor syndromes such as MEN1. The review discusses the MEN1-associated hyperplasia-neoplasia sequence in the development of gastrinomas in the duodenum and glucagon-producing tumors in the pancreas. It also presents other newly described diseases (e.g., glucagon cell adenomatosis and insulinomatosis) in which the tumors are (or most likely) also preceded by islet cell hyperplasia. Finally, the pseudohyperplasia of PP-rich islets in the pancreatic head is defined as a physiologic condition clearly differing from other hyperplastic-neoplastic neuroendocrine diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CSPG4 marks pericytes, undifferentiated precursors and tumor cells. We assessed whether the shed ectodomain of CSPG4 (sCSPG4) might circulate and reflect potential changes in CSPG4 tissue expression (pCSPG4) due to desmoplastic and malignant aberrations occurring in pancreatic tumors. Serum sCSPG4 was measured using ELISA in test (n = 83) and validation (n = 221) cohorts comprising donors (n = 11+26) and patients with chronic pancreatitis (n = 11+20) or neoplasms: benign (serous cystadenoma SCA, n = 13+20), premalignant (intraductal dysplastic IPMNs, n = 9+55), and malignant (IPMN-associated invasive carcinomas, n = 4+14; ductal adenocarcinomas, n = 35+86). Pancreatic pCSPG4 expression was evaluated using qRT-PCR (n = 139), western blot analysis and immunohistochemistry. sCSPG4 was found in circulation, but its level was significantly lower in pancreatic patients than in donors. Selective maintenance was observed in advanced IPMNs and PDACs and showed a nodal association while lacking prognostic relevance. Pancreatic pCSPG4 expression was preserved or elevated, whereby neoplastic cells lacked pCSPG4 or tended to overexpress without shedding. Extreme pancreatic overexpression, membranous exposure and tissue(high)/sera(low)-discordance highlighted stroma-poor benign cystic neoplasm. SCA is known to display hypoxic markers and coincide with von-Hippel-Lindau and Peutz-Jeghers syndromes, in which pVHL and LBK1 mutations affect hypoxic signaling pathways. In vitro testing confined pCSPG4 overexpression to normal mesenchymal but not epithelial cells, and a third of tested carcinoma cell lines; however, only the latter showed pCSPG4-responsiveness to chronic hypoxia. siRNA-based knockdowns failed to reduce the malignant potential of either normoxic or hypoxic cells. Thus, overexpression of the newly established conditional hypoxic indicator, CSPG4, is apparently non-pathogenic in pancreatic malignancies but might mark distinct epithelial lineage and contribute to cell polarity disorders. Surficial retention on tumor cells renders CSPG4 an attractive therapeutic target. Systemic 'drop and restoration' alterations accompanying IPMN and PDAC progression indicate that the interference of pancreatic diseases with local and remote shedding/release of sCSPG4 into circulation deserves broad diagnostic exploration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing evidence indicates that tumor microenvironment (TME) is crucial in tumor survival and metastases. Inflammatory cells accumulate around tumors and strangely appear to be permissive to their growth. One key stroma cell is the mast cell (MC), which can secrete numerous pro- and antitumor molecules. We investigated the presence and degranulation state of MC in pancreatic ductal adenocarcinoma (PDAC) as compared to acute ancreatitis (AP). Three different detection methods: (a) toluidine blue staining, as well as immunohistochemistry for (b) tryptase and (c) c-kit, were utilized to assess the number and extent of degranulation of MC in PDAC tissue (n=7), uninvolved pancreatic tissue derived from tumor-free margins (n=7) and tissue form AP (n=4). The number of MC detected with all three methods was significantly increased in PDAC, as compared to normal pancreatic tissue derived from tumor-free margins (p<0.05). The highest number of MC was identified by c-kit, 22.2∓7.5 per high power field (HPF) in PDAC vs 9.7∓5.1 per HPF in normal tissue. Contrary to MC in AP, where most of the detected MC were found degranulated, MC in PDAC appeared intact. In conclusion, MC are increased in number, but not degranulated in PDAC, suggesting that they may contribute to cancer growth by permitting selective release of pro-tumorogenic molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The understanding of molecular mechanisms leading to poor prognosis in pancreatic cancer may help develop treatment options. N-myc downstream-regulated gene-1 (NDRG1) has been correlated to better prognosis in pancreatic cancer. Therefore, we thought to analyze how the loss of NDRG1 affects progression in an orthotopic xenograft animal model of recurrence. METHODS: Capan-1 cells were silenced for NDRG1 (C(sil)) or transfected with scrambled shRNA (C(scr)) and compared for anchorage-dependent and anchorage-independent growth, invasion and tube formation in vitro. In an orthotopic xenograft model of recurrence tumors were grown in the pancreatic tail. The effect of NDRG1 silencing was evaluated on tumor size and metastasis. RESULTS: The silencing of NDRG1 in Capan-1 cells leads to more aggressive tumor growth and metastasis. We found faster cell growth, double count of invaded cells and 1.8-fold increase in tube formation in vitro. In vivo local tumors were 5.9-fold larger (p = 0.006) and the number of metastases was higher in animals with tumors silenced for NDRG1 primarily (3 vs. 1.1; p = 0.005) and at recurrence (3.3 vs. 0.9; p = 0.015). CONCLUSION: NDRG1 may be an interesting therapeutic target as its silencing in human pancreatic cancer cells leads to a phenotype with more aggressive tumor growth and metastasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pancreatic cancer cells intimately interact with a complex microenvironment that influences pancreatic cancer progression. The pancreas is innervated by fibers of the sympathetic nervous system (SNS) and pancreatic cancer cells have receptors for SNS neurotransmitters which suggests that pancreatic cancer may be sensitive to neural signaling. In vitro and non-orthotopic in vivo studies showed that neural signaling modulates tumour cell behavior. However the effect of SNS signaling on tumor progression within the pancreatic microenvironment has not previously been investigated. To address this, we used in vivo optical imaging to non-invasively track growth and dissemination of primary pancreatic cancer using an orthotopic mouse model that replicates the complex interaction between pancreatic tumor cells and their microenvironment. Stress-induced neural activation increased primary tumor growth and tumor cell dissemination to normal adjacent pancreas. These effects were associated with increased expression of invasion genes by tumor cells and pancreatic stromal cells. Pharmacological activation of β-adrenergic signaling induced similar effects to chronic stress, and pharmacological β-blockade reversed the effects of chronic stress on pancreatic cancer progression. These findings indicate that neural β-adrenergic signaling regulates pancreatic cancer progression and suggest β-blockade as a novel strategy to complement existing therapies for pancreatic cancer

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we explore the role of the interplay between host immune response and epithelial-mesenchymal-transition (EMT)-Type tumor-budding on the outcome of pancreatic adenocarcinoma (PDAC).CD4+, CD8+, and FOXP3+T-cells as well as iNOS+ (M1) and CD163+- macrophages (M2) were assessed on multipunch tissue-microarrays containing 120 well-characterized PDACs, precursor lesions (PanINs) and corresponding normal tissue. Counts were normalized for the percentage of tumor/spot and associated with the clinico-pathological features, including peritumoral (PTB) and intratumoral (ITB) EMT-Type tumor-budding and outcome.Increased FOXP3+T-cell-counts and CD163-macrophages and decreased CD8+T-cell-counts were observed in PDACs compared with normal tissues and PanINs (p < 0.0001). Increased peritumoral FOXP3+T-cell-counts correlated significantly with venous invasion, distant metastasis, R1-status, high-grade ITB, PTB and independently with reduced survival. Increased intratumoral FOXP3+T-cells correlated with lymphatic invasion, N1-stage, PTB and marginally with adverse outcome. High peritumoral CD163-counts correlated with venous invasion, PTB and ITB. High intratumoral CD163-counts correlated with higher T-stage and PTB.PDAC-microenvironment displays a tumor-favoring immune-cell composition especially in the immediate environment of the tumor-buds that promotes further growth and indicates a close interaction of the immune response with the EMT-process. Increased peritumoral FOXP3+T-cell density is identified as an independent adverse prognostic factor in PDAC. Patients with phenotypically aggressive PDACs may profit from targeted immunotherapy against FOXP3.