51 resultados para PROGRESSIVE COLLAPSE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous disorders characterised by myoclonus, epilepsy, and neurological deterioration. This study aimed to identify the underlying gene(s) in childhood onset PME patients with unknown molecular genetic background.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In progressive immunoglobulin A nephropathy (IgAN), intravenous immunoglobulin (IVIg) treatment has been used to delay disease progression, but the long-term efficacy is largely unknown. We report the clinical outcomes after IVIg therapy in six male patients with progressive IgAN [median glomerular filtration rate (GFR) 31 ml/min per 1.73 m(2)] followed for a median observation period of 8 years. In this single-arm, non-randomized study, IVIg was given monthly at a dose of 2 g/kg body weight for 6 months. The course of renal function was assessed by linear regression analysis of GFR and proteinuria, and was compared to eight patients with IgAN (median GFR 29 ml/min per 1.73 m(2)) without IVIg as a contemporaneous control group. IgAN disease progression was delayed after IVIg therapy on average for 3 years. The mean loss of renal function decreased from -1.05 ml/min per month to -0.15 ml/min per month (P = 0.024) and proteinuria decreased from 2.4 g/l to 1.0 g/l (P = 0.015). The primary end-point (GFR < 10 ml/min or relapse) occurred 5.2 years (median; range 0.4-8.8) after the first IVIg pulse, and after 1.3 years (median; range 0.8-2.4) in the control group (P = 0.043). In Kaplan-Meier analysis, the median renal survival time with IVIg was prolonged by 3.5 years (IVIg 4.7 years versus control 1.2 years; P = 0.006). IVIg pulse therapy may be considered as a treatment option to reduce the loss of renal function and improve proteinuria in patients with progressive IgAN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cause of porcine congenital progressive ataxia and spastic paresis (CPA) is unknown. This severe neuropathy manifests shortly after birth and is lethal. The disease is inherited as a single autosomal recessive allele, designated cpa. In a previous study, we demonstrated close linkage of cpa to microsatellite SW902 on porcine chromosome 3 (SSC3), which corresponds syntenically to human chromosome 2. This latter chromosome contains ion channel genes (Ca(2+), K(+) and Na(+)), a cholinergic receptor gene and the spastin (SPG4) gene, which cause human epilepsy and ataxia when mutated. We mapped porcine CACNB4, KCNJ3, SCN2A and CHRNA1 to SSC15 and SPG4 to SSC3 with the INRA-Minnesota porcine radiation hybrid panel (IMpRH) and we sequenced the entire open reading frames of CACNB4 and SPG4 without finding any differences between healthy and affected piglets. An anti-epileptic drug treatment with ethosuximide did not change the severity of the disease, and pigs with CPA did not exhibit the corticospinal tract axonal degeneration found in humans suffering from hereditary spastic paraplegia, which is associated with mutations in SPG4. For all these reasons, the hypothesis that CACNB4, CHRNA1, KCNJ3, SCN2A or SPG4 are identical with the CPA gene was rejected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: Cardiac myopathies are the second leading cause of death in patients with Duchenne and Becker muscular dystrophy, the two most common and severe forms of a disabling striated muscle disease. Although the genetic defect has been identified as mutations of the dystrophin gene, very little is known about the molecular and cellular events leading to progressive cardiac muscle damage. Dystrophin is a protein linking the cytoskeleton to a complex of transmembrane proteins that interact with the extracellular matrix. The fragility of the cell membrane resulting from the lack of dystrophin is thought to cause an excessive susceptibility to mechanical stress. Here, we examined cellular mechanisms linking the initial membrane damage to the dysfunction of dystrophic heart. METHODS AND RESULTS: Cardiac ventricular myocytes were enzymatically isolated from 5- to 9-month-old dystrophic mdx and wild-type (WT) mice. Cells were exposed to mechanical stress, applied as osmotic shock. Stress-induced cytosolic and mitochondrial Ca(2+) signals, production of reactive oxygen species (ROS), and mitochondrial membrane potential were monitored with confocal microscopy and fluorescent indicators. Pharmacological tools were used to scavenge ROS and to identify their possible sources. Osmotic shock triggered excessive cytosolic Ca(2+) signals, often lasting for several minutes, in 82% of mdx cells. In contrast, only 47% of the WT cardiomyocytes responded with transient and moderate intracellular Ca(2+) signals. On average, the reaction was 6-fold larger in mdx cells. Removal of extracellular Ca(2+) abolished these responses, implicating Ca(2+) influx as a trigger for abnormal Ca(2+) signalling. Our further experiments revealed that osmotic stress in mdx cells produced an increase in ROS production and mitochondrial Ca(2+) overload. The latter was followed by collapse of the mitochondrial membrane potential, an early sign of cell death. CONCLUSION: Overall, our findings reveal that excessive intracellular Ca(2+) signals and ROS generation link the initial sarcolemmal injury to mitochondrial dysfunctions. The latter possibly contribute to the loss of functional cardiac myocytes and heart failure in dystrophy. Understanding the sequence of events of dystrophic cell damage and the deleterious amplification systems involved, including several positive feed-back loops, may allow for a rational development of novel therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mild cognitive impairment (MCI) often refers to the preclinical stage of dementia, where the majority develop Alzheimer's disease (AD). Given that neurodegenerative burden and compensatory mechanisms might exist before accepted clinical symptoms of AD are noticeable, the current prospective study aimed to investigate the functioning of brain regions in the visuospatial networks responsible for preclinical symptoms in AD using event-related functional magnetic resonance imaging (fMRI). Eighteen MCI patients were evaluated and clinically followed for approximately 3 years. Five progressed to AD (PMCI) and eight remained stable (SMCI). Thirteen age-, gender- and education-matched controls also participated. An angle discrimination task with varying task demands was used. Brain activation patterns as well as task demand-dependent and -independent signal changes between the groups were investigated by using an extended general linear model including individual performance (reaction time [RT]) of each single trial. Similar behavioral (RT and accuracy) responses were observed between MCI patients and controls. A network of bilateral activations, e.g. dorsal pathway, which increased linearly with increasing task demand, was engaged in all subjects. Compared with SMCI patients and controls, PMCI patients showed a stronger relation between task demand and brain activity in left superior parietal lobules (SPL) as well as a general task demand-independent increased activation in left precuneus. Altered brain function can be detected at a group level in individuals that progress to AD before changes occur at the behavioral level. Increased parietal activation in PMCI could reflect a reduced neuronal efficacy due to accumulating AD pathology and might predict future clinical decline in patients with MCI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUNDS: Cyclophosphamide and high-dose steroids have been used as limited induction therapy in progressive IgA nephropathy (IgAN) to reduce the loss of renal function and proteinuria. We evaluated the effect of cyclophosphamide pulses (CyP) and mycophenolic acid (MPA) as sequential therapy on renal function in patients with progressive IgAN. METHODS: Twenty patients with progressive IgAN and advanced renal failure (median GFR 22 ml/min per 1.73 m2) and further disease activity (triangle downGFR -0.8 ml/min per month) after cyclophosphamide (CyP; n = 18) or steroid pulse therapy (n = 2) were treated with mycophenolate mofetil 1 g per day for a median of 27 months. RESULTS: The monthly loss of renal function was significantly reduced in linear regression analysis from -2.4 ml/min before CyP to -0.12 ml/min with CyP/MPA (p = 0.0009). Estimated renal survival time was significantly prolonged by a median of 65 months (p = 0.0014). Proteinuria decreased significantly from 1.7 to 0.4 g/l during MPA treatment (p = 0.015). In Cox regression analysis, only proteinuria >1.0 g/l was an independent risk factor for doubling of creatinine during CyP/MPA treatment (p = 0.03). CONCLUSION: A sequential therapy with CyP/MPA may arrest or slow down the loss of renal function and reduces proteinuria even in patients who passed the so called 'point of no return' with progressive IgAN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: To compare the plasma levels of endothelin-1 (ET-1) between patients with primary open angle glaucoma with visual field progression despite normal or normalised intraocular pressure and patients with stabile visual fields in a retrospective study. METHODS: The progressive group consisted of 16 primary open angle glaucoma patients and the group with stable visual field consisted of 15 patients. After a 30 minute rest in a supine position, venous blood was obtained for ET-1 dosing. Difference in the plasma level of ET-1 between two groups was compared by means of analysis of covariance (ANCOVA), including age, sex, and mean arterial blood pressure as covariates. RESULTS: ET-1 plasma levels were found to be significantly increased in patients with deteriorating (3.47 (SD 0.75) pg/ml) glaucoma when compared to those with stable (2.59 (SD 0.54) pg/ml) visual fields (p = 0.0007). CONCLUSIONS: Glaucoma patients with visual field progression in spite of normal or normalised intraocular pressure have been found to have increased plasma endothelin-1 levels. It remains to be determined if this is a secondary phenomenon or whether it may have a role in the progression of glaucomatous damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: The importance of ventilatory support during cardiac arrest and basic life support is controversial. This experimental study used dynamic computed tomography (CT) to assess the effects of chest compressions only during cardiopulmonary resuscitation (CCO-CPR) on alveolar recruitment and haemodynamic parameters in porcine model of ventricular fibrillation. MATERIALS AND METHODS: Twelve anaesthetized pigs (26+/-1kg) were randomly assigned to one of the following groups: (1) intermittent positive pressure ventilation (IPPV) both during basic life support and advanced cardiac life support, or (2) CCO during basic life support and IPPV during advanced cardiac life support. Measurements were acquired at baseline prior to cardiac arrest, during basic life support, during advanced life support, and after return of spontaneous circulation (ROSC), as follows: dynamic CT series, arterial and central venous pressures, blood gases, and regional organ blood flow. The ventilated and atelectatic lung area was quantified from dynamic CT images. Differences between groups were analyzed using the Kruskal-Wallis test, and a p<0.05 was considered statistically significant. RESULTS: IPPV was associated with cyclic alveolar recruitment and de-recruitment. Compared with controls, the CCO-CPR group had a significantly larger mean fractional area of atelectasis (p=0.009), and significantly lower PaO(2) (p=0.002) and mean arterial pressure (p=0.023). The increase in mean atelectatic lung area observed during basic life support in the CCO-CPR group remained clinically relevant throughout the subsequent advanced cardiac life support period and following ROSC, and was associated with prolonged impaired haemodynamics. No inter-group differences in myocardial and cerebral blood flow were observed. CONCLUSION: A lack of ventilation during basic life support is associated with excessive atelectasis, arterial hypoxaemia and compromised CPR haemodynamics. Moreover, these detrimental effects remain evident even after restoration of IPPV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selective dorsal rhizotomy at the lumbar level is a neurosurgical procedure, which reduces spasticity in the legs. Its effect has mainly been studied in children with spastic cerebral palsy. Little is known about the outcome of selective dorsal rhizotomy in patients with neurodegenerative disorders. We report the clinical course after selective dorsal rhizotomy in 2 patients with progressive spasticity. Leg spasticity was effectively and persistently reduced in both patients, facilitating care and improving sitting comfort. However, spasticity of the arms and other motor disturbances, such as spontaneous extension spasms and the ataxia, increased gradually in time. Selective dorsal rhizotomy leads to a disappearance of leg spasticity in patients with a neurodegenerative disease. Other motor signs are not influenced and may increase due to the progressive nature of the underlying disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The expression of vascular endothelial growth factor (VEGF) is characteristic of differentiated thyroid cancer and is associated with aggressive tumor behavior and a poor clinical outcome. Motesanib diphosphate (AMG 706) is a novel oral inhibitor of VEGF receptors, platelet-derived growth-factor receptor, and KIT. METHODS: In an open-label, single-group, phase 2 study, we treated 93 patients who had progressive, locally advanced or metastatic, radioiodine-resistant differentiated thyroid cancer with 125 mg of motesanib diphosphate, administered orally once daily. The primary end point was an objective response as assessed by an independent radiographic review. Additional end points included the duration of the response, progression-free survival, safety, and changes in serum thyroglobulin concentration. RESULTS: Of the 93 patients, 57 (61%) had papillary thyroid carcinoma. The objective response rate was 14%. Stable disease was achieved in 67% of the patients, and stable disease was maintained for 24 weeks or longer in 35%; 8% had progressive disease as the best response. The Kaplan-Meier estimate of the median duration of the response was 32 weeks (the lower limit of the 95% confidence interval [CI] was 24; the upper limit could not be estimated because of an insufficient number of events); the estimate of median progression-free survival was 40 weeks (95% CI, 32 to 50). Among the 75 patients in whom thyroglobulin analysis was performed, 81% had decreased serum thyroglobulin concentrations during treatment, as compared with baseline levels. The most common treatment-related adverse events were diarrhea (in 59% of the patients), hypertension (56%), fatigue (46%), and weight loss (40%). CONCLUSIONS: Motesanib diphosphate can induce partial responses in patients with advanced or metastatic differentiated thyroid cancer that is progressive. (ClinicalTrials.gov number, NCT00121628.)