64 resultados para PRBS signal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal proteins are able to adapt their response to a change in the environment, governing in this way a broad variety of important cellular processes in living systems. While conventional molecular-dynamics (MD) techniques can be used to explore the early signaling pathway of these protein systems at atomistic resolution, the high computational costs limit their usefulness for the elucidation of the multiscale transduction dynamics of most signaling processes, occurring on experimental timescales. To cope with the problem, we present in this paper a novel multiscale-modeling method, based on a combination of the kinetic Monte-Carlo- and MD-technique, and demonstrate its suitability for investigating the signaling behavior of the photoswitch light-oxygen-voltage-2-Jα domain from Avena Sativa (AsLOV2-Jα) and an AsLOV2-Jα-regulated photoactivable Rac1-GTPase (PA-Rac1), recently employed to control the motility of cancer cells through light stimulus. More specifically, we show that their signaling pathways begin with a residual re-arrangement and subsequent H-bond formation of amino acids near to the flavin-mononucleotide chromophore, causing a coupling between β-strands and subsequent detachment of a peripheral α-helix from the AsLOV2-domain. In the case of the PA-Rac1 system we find that this latter process induces the release of the AsLOV2-inhibitor from the switchII-activation site of the GTPase, enabling signal activation through effector-protein binding. These applications demonstrate that our approach reliably reproduces the signaling pathways of complex signal proteins, ranging from nanoseconds up to seconds at affordable computational costs.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of the schizont stage of the obligate intracellular parasites Theileria parva or T. annulata in the cytoplasm of an infected leukocyte results in host cell transformation via a mechanism that has not yet been elucidated. Proteins, secreted by the schizont, or expressed on its surface, are of interest as they can interact with host cell molecules that regulate host cell proliferation and/or survival. The major schizont surface protein is the polymorphic immunodominant molecule, PIM, which contains a large glutamine- and proline-rich domain (QP-rd) that protrudes into the host cell cytoplasm. Analyzing QP-rd generated by in vitro transcription/translation, we found that the signal peptide was efficiently cleaved post-translationally upon addition of T cell lysate or canine pancreatic microsomes, whereas signal peptide cleavage of a control protein only occurred cotranslationally and in the presence of microsomal membranes. The QP-rd of PIM migrated anomalously in SDS-PAGE and removal of the 19 amino acids corresponding to the predicted signal peptide caused a decrease in apparent molecular mass of 24kDa. The molecule was analyzed using monoclonal antibodies that recognize a set of previously defined PIM epitopes. Depending on the presence or the absence of the signal peptide, two conformational states could be demonstrated that are differentially recognized, with N-terminal epitopes becoming readily accessible upon signal peptide removal, and C-terminal epitopes becoming masked. Similar observations were made when the QP-rd of PIM was expressed in bacteria. Our observations could also be of relevance to other schizont proteins. A recent analysis of the proteomes of T. parva and T. annulata revealed the presence of a large family of potentially secreted proteins, characterized by the presence of large stretches of amino acids that are also particularly rich in QP-residues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among other auditory operations, the analysis of different sound levels received at both ears is fundamental for the localization of a sound source. These so-called interaural level differences, in animals, are coded by excitatory-inhibitory neurons yielding asymmetric hemispheric activity patterns with acoustic stimuli having maximal interaural level differences. In human auditory cortex, the temporal blood oxygen level-dependent (BOLD) response to auditory inputs, as measured by functional magnetic resonance imaging (fMRI), consists of at least two independent components: an initial transient and a subsequent sustained signal, which, on a different time scale, are consistent with electrophysiological human and animal response patterns. However, their specific functional role remains unclear. Animal studies suggest these temporal components being based on different neural networks and having specific roles in representing the external acoustic environment. Here we hypothesized that the transient and sustained response constituents are differentially involved in coding interaural level differences and therefore play different roles in spatial information processing. Healthy subjects underwent monaural and binaural acoustic stimulation and BOLD responses were measured using high signal-to-noise-ratio fMRI. In the anatomically segmented Heschl's gyrus the transient response was bilaterally balanced, independent of the side of stimulation, while in opposite the sustained response was contralateralized. This dissociation suggests a differential role at these two independent temporal response components, with an initial bilateral transient signal subserving rapid sound detection and a subsequent lateralized sustained signal subserving detailed sound characterization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of vitamin E to modulate signal transduction and gene expression has been observed in numerous studies; however, the detailed molecular mechanisms involved are often not clear. The eight natural vitamin E analogues and synthetic derivatives affect signal transduction with different potency, possibly reflecting their different ability to interact with specific proteins. Vitamin E modulates the activity of several enzymes involved in signal transduction, such as protein kinase C, protein kinase B, protein tyrosine kinases, 5-, 12-, and 15-lipoxygenases, cyclooxygenase-2, phospholipase A2, protein phosphatase 2A, protein tyrosine phosphatase, and diacylglycerol kinase. Activation of some these enzymes after stimulation of cell surface receptors with growth factors or cytokines can be normalized by vitamin E. At the molecular level, the translocation of several of these enzymes to the plasma membrane is affected by vitamin E, suggesting that the modulation of protein-membrane interactions may be a common theme for vitamin E action. In this review the main effects of vitamin E on enzymes involved in signal transduction are summarized and the possible mechanisms leading to enzyme modulation evaluated. The elucidation of the molecular and cellular events affected by vitamin E could reveal novel strategies and molecular targets for developing similarly acting compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Echicetin, a heterodimeric snake C-type lectin from Echis carinatus, is known to bind specifically to platelet glycoprotein (GP)Ib. We now show that, in addition, it agglutinates platelets in plasma and induces platelet signal transduction. The agglutination is caused by binding to a specific protein in plasma. The protein was isolated from plasma and shown to cause platelet agglutination when added to washed platelets in the presence of echicetin. It was identified as immunoglobulin Mkappa (IgMkappa) by peptide sequencing and dot blotting with specific heavy and light chain anti-immunoglobulin reagents. Platelet agglutination by clustering echicetin with IgMkappa induced P-selectin expression and activation of GPIIb/IIIa as well as tyrosine phosphorylation of several signal transduction molecules, including p53/56(LYN), p64, p72(SYK), p70 to p90, and p120. However, neither ethylenediaminetetraacetic acid nor specific inhibition of GPIIb/IIIa affected platelet agglutination or activation by echicetin. Platelet agglutination and induction of signal transduction could also be produced by cross-linking biotinylated echicetin with avidin. These data indicate that clustering of GPIb alone is sufficient to activate platelets. In vivo, echicetin probably activates platelets rather than inhibits platelet activation, as previously proposed, accounting for the observed induction of thrombocytopenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Convulxin, a powerful platelet activator, was isolated from Crotalus durissus terrificus venom, and 20 amino acid N-terminal sequences of both subunits were determined. These indicated that convulxin belongs to the heterodimeric C-type lectin family. Neither antibodies against GPIb nor echicetin had any effect on convulxin-induced platelet aggregation showing that, in contrast to other venom C-type lectins acting on platelets, GPIb is not involved in convulxin-induced platelet activation. In addition, partially reduced/denatured convulxin only affects collagen-induced platelet aggregation. The mechanism of convulxin-induced platelet activation was examined by platelet aggregation, detection of time-dependent tyrosine phosphorylation of platelet proteins, and binding studies with 125I-convulxin. Convulxin induces signal transduction in part like collagen, involving the time-dependent tyrosine phosphorylation of Fc receptor gamma chain, phospholipase Cgamma2, p72(SYK), c-Cbl, and p36-38. However, unlike collagen, pp125(FAK) and some other bands are not tyrosine-phosphorylated. Convulxin binds to a glycosylated 62-kDa membrane component in platelet lysate and to p62/GPVI immunoprecipitated by human anti-p62/GPVI antibodies. Convulxin subunits inhibit both aggregation and tyrosine phosphorylation in response to collagen. Piceatannol, a tyrosine kinase inhibitor with some specificity for p72(SYK), showed differential effects on collagen and convulxin-stimulated signaling. These results suggest that convulxin uses the p62/GPVI but not the alpha2beta1 part of the collagen signaling pathways to activate platelets. Occupation and clustering of p62/GPVI may activate Src family kinases phosphorylating Fc receptor gamma chain and, by a mechanism previously described in T- and B-cells, activate p72(SYK) that is critical for downstream activation of platelets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Persistence in canine distemper virus (CDV) infection is correlated with very limited cell-cell fusion and lack of cytolysis induced by the neurovirulent A75/17-CDV compared to that of the cytolytic Onderstepoort vaccine strain. We have previously shown that this difference was at least in part due to the amino acid sequence of the fusion (F) protein (P. Plattet, J. P. Rivals, B. Zuber, J. M. Brunner, A. Zurbriggen, and R. Wittek, Virology 337:312-326, 2005). Here, we investigated the molecular mechanisms of the neurovirulent CDV F protein underlying limited membrane fusion activity. By exchanging the signal peptide between both F CDV strains or replacing it with an exogenous signal peptide, we demonstrated that this domain controlled intracellular and consequently cell surface protein expression, thus indirectly modulating fusogenicity. In addition, by serially passaging a poorly fusogenic virus and selecting a syncytium-forming variant, we identified the mutation L372W as being responsible for this change of phenotype. Intriguingly, residue L372 potentially is located in the helical bundle domain of the F(1) subunit. We showed that this mutation drastically increased fusion activity of F proteins of both CDV strains in a signal peptide-independent manner. Due to its unique structure even among morbilliviruses, our findings with respect to the signal peptide are likely to be specifically relevant to CDV, whereas the results related to the helical bundle add new insights to our growing understanding of this class of F proteins. We conclude that different mechanisms involving multiple domains of the neurovirulent A75/17-CDV F protein act in concert to limit fusion activity, preventing lysis of infected cells, which ultimately may favor viral persistence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rat Walker 256 carcinosarcoma cells spontaneously develop front-tail polarity and migrate in the absence of added stimuli. Constitutive activation of phosphatidylinositol-3 kinase (PI 3-kinase), Rac, Rho and Rho kinase are essential for these processes. Ezrin and moesin are putative targets of these signaling pathways leading to spontaneous migration. To test this hypothesis, we used specific siRNA probes that resulted in a downregulation of ezrin and moesin by about 70% and in a similar reduction in the fraction of migrating cells. Spontaneous polarization however was not affected, indicating a more subtle role of ezrin and moesin in migration. We provide furthermore evidence that endogenous ezrin and moesin colocalize with F-actin at the contracted tail of polarized cells, similar to ectopically expressed green fluorescent protein-tagged ezrin. Our results suggest that myosin light chain and ezrin are markers of front and tail, respectively, even in the absence of morphological polarization. We further show that endogenous ezrin and moesin are phosphorylated and that activities of PI-3 kinase, Rho and Rac, but not of Rho-kinase, are required for this C-terminal phosphorylation. Activation of protein kinase C in contrast suppressed phosphorylation of ezrin and moesin. Inhibition of ezrin phosphorylation prevented its membrane association.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the current study was to examine the effect of theta burst repetitive transcranial magnetic stimulation (rTMS) on the blood oxygenation level-dependent (BOLD) activation during repeated functional magnetic resonance imaging (fMRI) measurements. Theta burst rTMS was applied over the right frontal eye field in seven healthy subjects. Subsequently, repeated fMRI measurements were performed during a saccade-fixation task (block design) 5, 20, 35, and 60 min after stimulation. We found that theta burst rTMS induced a strong and long-lasting decrease of the BOLD signal response of the stimulated frontal eye field at 20 and 35 min. Furthermore, less pronounced alterations of the BOLD signal response with different dynamics were found for remote oculomotor areas such as the left frontal eye field, the pre-supplementary eye field, the supplementary eye field, and both parietal eye fields. Recovery of the BOLD signal changes in the anterior remote areas started earlier than in the posterior remote areas. These results show that a) the major inhibitory impact of theta burst rTMS occurs directly in the stimulated area itself, and that b) a lower effect on remote, oculomotor areas can be induced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trials on implantable cardioverter-defibrillators (ICD) for patients after acute myocardial infarction (AMI) have highlighted the need for risk assessment of arrhythmic events (AE). The aim of this study was to evaluate risk predictors based on a novel approach of interpreting signal-averaged electrocardiogram (SAECG) and ejection fraction (EF).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Rapamycines, sirolimus (SRL) and everolimus (ERL), are proliferation signal inhibitors (PSIs). PSI therapy often leads to edema. We hypothesized that increased oxidative stress in response to PSIs may modulate the expression of vascular endothelial (VE)-cadherin on endothelial cells (ECs) and, subsequently, vascular permeability, which in turn may be involved in the development of edema. METHODS: Experiments were performed on human umbilical vein ECs (HUVECs). Oxidative stress was measured by dichlorofluorescein-diacetate. Expression of VE-cadherin was evaluated by immunofluorescent staining and western blot analysis. Endothelial "permeability" was assessed using a transwell model. RESULTS: SRL and ERL, at concentrations of 1, 10 and 100 nmol/liter, enhanced oxidative stress (SRL: 24 +/- 12%, 29 +/- 9%, 41 +/- 13% [p < 0.05, in all three cases]; ERL: 13 +/- 10%, 27 +/- 2%, 40 +/- 12% [p < 0.05, in the latter two cases], respectively) on HUVECs, which was inhibited by the anti-oxidant, N-acetyl-cysteine (NAC) and, to a lesser extent, by the specific inhibitor of nitric oxide synthase, N-Omega-nitro-L-arginine methylester. By the use of NAC, VE-cadherin expression remained comparable with control, according to both immunocytochemistry and western blot analysis. Permeability was significantly increased by SRL and ERL at 100 nmol/liter (29.5 +/- 6.4% and 33.8 +/- 4.2%, respectively); however, co-treatment with NAC abrogated the increased permeability. CONCLUSIONS: EC homeostasis, as indicated by VE-cadherin expression, may be damaged by SRL and ERL, but resolved by the anti-oxidant NAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Users of cochlear implant systems, that is, of auditory aids which stimulate the auditory nerve at the cochlea electrically, often complain about poor speech understanding in noisy environments. Despite the proven advantages of multimicrophone directional noise reduction systems for conventional hearing aids, only one major manufacturer has so far implemented such a system in a product, presumably because of the added power consumption and size. We present a physically small (intermicrophone distance 7 mm) and computationally inexpensive adaptive noise reduction system suitable for behind-the-ear cochlear implant speech processors. Supporting algorithms, which allow the adjustment of the opening angle and the maximum noise suppression, are proposed and evaluated. A portable real-time device for test in real acoustic environments is presented.