18 resultados para PM3 semi-empirical method
Resumo:
In contrast to preoperative brain tumor segmentation, the problem of postoperative brain tumor segmentation has been rarely approached so far. We present a fully-automatic segmentation method using multimodal magnetic resonance image data and patient-specific semi-supervised learning. The idea behind our semi-supervised approach is to effectively fuse information from both pre- and postoperative image data of the same patient to improve segmentation of the postoperative image. We pose image segmentation as a classification problem and solve it by adopting a semi-supervised decision forest. The method is evaluated on a cohort of 10 high-grade glioma patients, with segmentation performance and computation time comparable or superior to a state-of-the-art brain tumor segmentation method. Moreover, our results confirm that the inclusion of preoperative MR images lead to a better performance regarding postoperative brain tumor segmentation.
Resumo:
BACKGROUND Record linkage of existing individual health care data is an efficient way to answer important epidemiological research questions. Reuse of individual health-related data faces several problems: Either a unique personal identifier, like social security number, is not available or non-unique person identifiable information, like names, are privacy protected and cannot be accessed. A solution to protect privacy in probabilistic record linkages is to encrypt these sensitive information. Unfortunately, encrypted hash codes of two names differ completely if the plain names differ only by a single character. Therefore, standard encryption methods cannot be applied. To overcome these challenges, we developed the Privacy Preserving Probabilistic Record Linkage (P3RL) method. METHODS In this Privacy Preserving Probabilistic Record Linkage method we apply a three-party protocol, with two sites collecting individual data and an independent trusted linkage center as the third partner. Our method consists of three main steps: pre-processing, encryption and probabilistic record linkage. Data pre-processing and encryption are done at the sites by local personnel. To guarantee similar quality and format of variables and identical encryption procedure at each site, the linkage center generates semi-automated pre-processing and encryption templates. To retrieve information (i.e. data structure) for the creation of templates without ever accessing plain person identifiable information, we introduced a novel method of data masking. Sensitive string variables are encrypted using Bloom filters, which enables calculation of similarity coefficients. For date variables, we developed special encryption procedures to handle the most common date errors. The linkage center performs probabilistic record linkage with encrypted person identifiable information and plain non-sensitive variables. RESULTS In this paper we describe step by step how to link existing health-related data using encryption methods to preserve privacy of persons in the study. CONCLUSION Privacy Preserving Probabilistic Record linkage expands record linkage facilities in settings where a unique identifier is unavailable and/or regulations restrict access to the non-unique person identifiable information needed to link existing health-related data sets. Automated pre-processing and encryption fully protect sensitive information ensuring participant confidentiality. This method is suitable not just for epidemiological research but also for any setting with similar challenges.
Resumo:
The growth rate of atmospheric carbondioxide(CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO 2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. Whereas the mean sink is dominated by highly productive lands (mainly tropical forests), the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature.