73 resultados para PCR sensitivity in mice


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The NIMH's new strategic plan, with its emphasis on the "4P's" (Prediction, Pre-emption, Personalization, and Populations) and biomarker-based medicine requires a radical shift in animal modeling methodology. In particular 4P's models will be non-determinant (i.e. disease severity will depend on secondary environmental and genetic factors); and validated by reverse-translation of animal homologues to human biomarkers. A powerful consequence of the biomarker approach is that different closely related disorders have a unique fingerprint of biomarkers. Animals can be validated as a highly specific model of a single disorder by matching this 'fingerprint'; or as a model of a symptom seen in multiple disorders by matching common biomarkers. Here we illustrate this approach with two Abnormal Repetitive Behaviors (ARBs) in mice: stereotypies and barbering (hair pulling). We developed animal versions of the neuropsychological biomarkers that distinguish human ARBs, and tested the fingerprint of the different mouse ARBs. As predicted, the two mouse ARBs were associated with different biomarkers. Both barbering and stereotypy could be discounted as models of OCD (even though they are widely used as such), due to the absence of limbic biomarkers which are characteristic of OCD and hence are necessary for a valid model. Conversely barbering matched the fingerprint of trichotillomania (i.e. selective deficits in set-shifting), suggesting it may be a highly specific model of this disorder. In contrast stereotypies were correlated only with a biomarker (deficits in response shifting) correlated with stereotypies in multiple disorders, suggesting that animal stereotypies model stereotypies in multiple disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improving the home cages of laboratory mice by environmental enrichment has been widely used to reduce cage stereotypies and anxiety-related behaviour in behavioural tests. However, enrichment studies differ substantially in type, complexity and variation of enrichments. Therefore, it is unclear whether success depends on specific enrichment items, environmental complexity, or novelty associated with enrichment. The aim of this study was therefore to dissociate the effects of environmental complexity and novelty on stereotypy development and compare these effects with the provision of nesting material alone. Thus, 54 freshly weaned male ICR (CD-1) mice were pairwise allocated to standard laboratory cages enriched in three different ways (n = 18 per group). Treatment 1 consisted of cotton wool as nesting material. Treatments 2 and 3 were structurally more complex, including a shelter and a climbing structure as additional resources. To render complexity and novelty independent of the specific enrichment items, three shelters (cardboard house, plastic tunnel, red plastic house) and three climbing structures (ladder, rope, wooden bars) were used to create nine different combinations of enrichment. In treatment 2 (complexity), each pair of mice was assigned to a different combination that remained constant throughout 9 weeks, whereas in treatment 3 (novelty), each pair of mice was exposed to all 9 combinations in turn by changing them weekly in a pseudorandom order. After 9 weeks, stereotypic behaviour in the home cage was assessed from video recordings, and anxiety-related behaviour was assessed in two behavioural tests (elevated zero-maze, open-field). However, no significant differences in stereotypy scores and no consistent differences in anxiety-related behaviours were found between the three groups. These findings indicate that within standard laboratory cages neither complexity nor novelty of simple enrichments have additional effects on stereotypic and anxiety-related behaviour beyond those of adequate nesting material. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background We present a compendium of N-ethyl-N-nitrosourea (ENU)-induced mouse mutations, identified in our laboratory over a period of 10 years either on the basis of phenotype or whole genome and/or whole exome sequencing, and archived in the Mutagenetix database. Our purpose is threefold: 1) to formally describe many point mutations, including those that were not previously disclosed in peer-reviewed publications; 2) to assess the characteristics of these mutations; and 3) to estimate the likelihood that a missense mutation induced by ENU will create a detectable phenotype. Findings In the context of an ENU mutagenesis program for C57BL/6J mice, a total of 185 phenotypes were tracked to mutations in 129 genes. In addition, 402 incidental mutations were identified and predicted to affect 390 genes. As previously reported, ENU shows strand asymmetry in its induction of mutations, particularly favoring T to A rather than A to T in the sense strand of coding regions and splice junctions. Some amino acid substitutions are far more likely to be damaging than others, and some are far more likely to be observed. Indeed, from among a total of 494 non-synonymous coding mutations, ENU was observed to create only 114 of the 182 possible amino acid substitutions that single base changes can achieve. Based on differences in overt null allele frequencies observed in phenotypic vs. non-phenotypic mutation sets, we infer that ENU-induced missense mutations create detectable phenotype only about 1 in 4.7 times. While the remaining mutations may not be functionally neutral, they are, on average, beneath the limits of detection of the phenotypic assays we applied. Conclusions Collectively, these mutations add to our understanding of the chemical specificity of ENU, the types of amino acid substitutions it creates, and its efficiency in causing phenovariance. Our data support the validity of computational algorithms for the prediction of damage caused by amino acid substitutions, and may lead to refined predictions as to whether specific amino acid changes are responsible for observed phenotypes. These data form the basis for closer in silico estimations of the number of genes mutated to a state of phenovariance by ENU within a population of G3 mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invariant natural killer T (iNKT) cells undergo canonical, Vα14-Jα18 rearrangement of the T-cell receptor (TCR) in mice; this form of the TCR recognizes glycolipids presented by CD1d. iNKT cells mediate many different immune reactions. Their constitutive activated and memory phenotype and rapid initiation of effector functions after stimulation indicate previous antigen-specific stimulation. However, little is known about this process. We investigated whether symbiotic microbes can determine the activated phenotype and function of iNKT cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the suitability of blood granulocyte and monocyte sensitivity, as measured by the quantity of different agonists required to induce CD62L shedding, for assessment of perioperative immune changes in patients undergoing cardiac surgery with cardiopulmonary bypass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The histidine triad nucleotide-binding (Hint2) protein is a mitochondrial adenosine phosphoramidase expressed in liver and pancreas. Its physiological function is unknown. To elucidate the role of Hint2 in liver physiology, the Hint2 gene was deleted. Hint2(-/-) and Hint2(+/+) mice were generated in a mixed C57Bl6/J x 129Sv background. At 20 weeks, the phenotypic changes in Hint2(-/-) relative to Hint2(+/+) mice were an accumulation of hepatic triglycerides, decreased tolerance to glucose, a defective counter-regulatory response to insulin-provoked hypoglycaemia, an increase in plasma interprandial insulin but a decrease in glucose stimulated insulin secretion and defective thermoregulation upon fasting. Leptin mRNA in adipose tissue and plasma leptin were elevated. In mitochondria from Hint2(-/-) hepatocytes, state 3 respiration was decreased, a finding confirmed in HepG2 cells where HINT2 mRNA was silenced. The linked complex II to III electron transfer was decreased in Hint2(-/-) mitochondria, which was accompanied by a lower content of coenzyme Q. HIF-2α expression and the generation of reactive oxygen species were increased. Electron microscopy of mitochondria in Hint2(-/-) mice aged 12 months revealed clustered, fused organelles. The hepatic activities of 3-hydroxyacyl-CoA dehydrogenase short chain and glutamate dehydrogenase (GDH) were decreased by 68% and 60%, respectively, without a change in protein expression. GDH activity was similarly decreased in HINT2-silenced HepG2 cells. When measured in the presence of purified sirtuin 3, latent GDH activity was recovered (126% in Hint2(-/-) vs. 83% in Hint2(+/+) ). This suggests a greater extent of acetylation in Hint2(-/-) than in Hint2(+/+) . Conlusions: Hint2 positively regulates mitochondrial lipid metabolism and respiration, and glucose homeostasis. The absence of Hint2 provokes mitochondrial deformities and a change in the pattern of acetylation of selected proteins. (HEPATOLOGY 2012.).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BOK/MTD was discovered as a protein that binds to the anti-apoptotic Bcl-2 family member MCL-1 and shares extensive amino-acid sequence similarity to BAX and BAK, which are essential for the effector phase of apoptosis. Therefore, and on the basis of its reported expression pattern, BOK is thought to function in a BAX/BAK-like pro-apoptotic manner in female reproductive tissues. In order to determine the function of BOK, we examined its expression in diverse tissues and investigated the consequences of its loss in Bok(-/-) mice. We confirmed that Bok mRNA is prominently expressed in the ovaries and uterus, but also observed that it is present at readily detectable levels in several other tissues such as the brain and myeloid cells. Bok(-/-) mice were produced at the expected Mendelian ratio, appeared outwardly normal and proved fertile. Histological examination revealed that major organs in Bok(-/-) mice displayed no morphological aberrations. Although several human cancers have somatically acquired copy number loss of the Bok gene and BOK is expressed in B lymphoid cells, we found that its deficiency did not accelerate lymphoma development in Eμ-Myc transgenic mice. Collectively, these results indicate that Bok may have a role that largely overlaps with that of other members of the Bcl-2 family, or may have a function restricted to specific stress stimuli and/or tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mouse molars undergo distal movement, during which new bone is formed at the mesial side of the tooth root whereas the preexisting bone is resorbed at the distal side of the root. However, there is little detailed information available regarding which of the bones that surround the tooth root are involved in physiological tooth movement. In the present study, we therefore aimed to investigate the precise morphological differences of the alveolar bone between the bone formation side of the tooth root, using routine histological procedures including silver impregnation, as well as by immunohistochemical analysis of alkaline phosphatase and tartrate-resistant acid phosphatase activity, and immunohistochemical analysis of the expression of the osteocyte markers dentin matrix protein 1, sclerostin, and fibroblast growth factor 23. Histochemical analysis indicated that bone formation by osteoblasts and bone resorption by osteoclasts occurred at the bone formation side and the bone resorption side, respectively. Osteocyte marker immunoreactivity of osteocytes at the surface of the bone close to the periodontal ligament differed at the bone formation and bone resorption sides. We also showed different specific features of osteocytic lacunar canalicular systems at the bone formation and bone resorption sides by using silver staining. This study suggests that the alveolar bone is different in the osteocyte nature between the bone formation side and the bone resorption side due to physiological distal movement of the mouse molar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin (IL)-17 signaling has been implicated in lung and skin fibrosis. We examined the role of IL-17 signaling in the pathogenesis of liver fibrosis in mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Circulating aldosterone levels are increased in human pregnancy. Inadequately low aldosterone levels as present in preeclampsia, a life-threatening disease for both mother and child, are discussed to be involved in its pathogenesis or severity. Moreover, inactivating polymorphisms in the aldosterone synthase gene have been detected in preeclamptic women. Here, we used aldosterone synthase-deficient (AS(-/-)) mice to test whether the absence of aldosterone is sufficient to impair pregnancy or even to cause preeclampsia. AS(-/-) and AS(+/+) females were mated with AS(+/+) and AS(-/-) males, respectively, always generating AS(+/-) offspring. With maternal aldosterone deficiency in AS(-/-) mice, systolic blood pressure was low before and further reduced during pregnancy with no increase in proteinuria. Yet, AS(-/-) had smaller litters due to loss of fetuses as indicated by a high number of necrotic placentas with massive lymphocyte infiltrations at gestational day 18. Surviving fetuses and their placentas from AS(-/-) females were smaller. High-salt diet before and during pregnancy increased systolic blood pressure only before pregnancy in both genotypes and abolished the difference in blood pressure during late pregnancy. Litter size from AS(-/-) was slightly improved and the differences in placental and fetal weights between AS(+/+) and AS(-/-) mothers disappeared. Overall, an increased placental efficiency was observed in both groups paralleled by a normalization of elevated HIF1α levels in the AS(-/-) placentas. Our results demonstrate that aldosterone deficiency has profound adverse effects on placental function. High dietary salt intake improved placental function. In this animal model, aldosterone deficiency did not cause preeclampsia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The inhibition of angiogenesis is a promising strategy for the treatment of malignant primary and secondary tumors in addition to established therapies such as surgery, chemotherapy, and radiation. There is strong experimental evidence in primary tumors that Cyclooxygenase-2 (Cox-2) inhibition is a potent mechanism to reduce angiogenesis. For bone metastases which occur in up to 85% of the most frequent malignant primary tumors, the effects of Cox-2 inhibition on angiogenesis and tumor growth remain still unclear. Therefore, the aim of this study was to investigate the effects of Celecoxib, a selective Cox-2 inhibitor, on angiogenesis, microcirculation and growth of secondary bone tumors. METHODS: In 10 male severe combined immunodeficient (SCID) mice, pieces of A549 lung carcinomas were implanted into a newly developed cranial window preparation where the calvaria serves as the site for orthotopic implantation of the tumors. From day 8 after tumor implantation, five animals (Celecoxib) were treated daily with Celecoxib (30 mg/kg body weight, s.c.), and five animals (Control) with the equivalent amount of the CMC-based vehicle. Angiogenesis, microcirculation, and growth of A549 tumors were analyzed by means of intravital microscopy. Apoptosis was quantified using the TUNEL assay. RESULTS: Treatment with Celecoxib reduced both microvessel density and tumor growth. TUNEL reaction showed an increase in apoptotic cell death of tumor cells after treatment with Celecoxib as compared to Controls. CONCLUSION: Celecoxib is a potent inhibitor of tumor growth of secondary bone tumors in vivo which can be explained by its anti-angiogenic and pro-apoptotic effects. The results indicate that a combination of established therapy regimes with Cox-2 inhibition represents a possible application for the treatment of bone metastases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Searching for the neural correlates of visuospatial processing using functional magnetic resonance imaging (fMRI) is usually done in an event-related framework of cognitive subtraction, applying a paradigm comprising visuospatial cognitive components and a corresponding control task. Besides methodological caveats of the cognitive subtraction approach, the standard general linear model with fixed hemodynamic response predictors bears the risk of being underspecified. It does not take into account the variability of the blood oxygen level-dependent signal response due to variable task demand and performance on the level of each single trial. This underspecification may result in reduced sensitivity regarding the identification of task-related brain regions. In a rapid event-related fMRI study, we used an extended general linear model including single-trial reaction-time-dependent hemodynamic response predictors for the analysis of an angle discrimination task. In addition to the already known regions in superior and inferior parietal lobule, mapping the reaction-time-dependent hemodynamic response predictor revealed a more specific network including task demand-dependent regions not being detectable using the cognitive subtraction method, such as bilateral caudate nucleus and insula, right inferior frontal gyrus and left precentral gyrus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early prenatal diagnosis and in utero therapy of certain fetal diseases have the potential to reduce fetal morbidity and mortality. The intrauterine transplantation of stem cells provides in some instances a therapeutic option before definitive organ failure occurs. Clinical experiences show that certain diseases, such as immune deficiencies or inborn errors of metabolism, can be successfully treated using stem cells derived from bone marrow. However, a remaining problem is the low level of engraftment that can be achieved. Efforts are made in animal models to optimise the graft and study the recipient's microenvironment to increase long-term engraftment levels. Our experiments in mice show similar early homing of allogeneic and xenogeneic stem cells and reasonable early engraftment of allogeneic murine fetal liver cells (17.1% donor cells in peripheral blood 4 weeks after transplantation), whereas xenogeneic HSC are rapidly diminished due to missing self-renewal and low differentiation capacities in the host's microenvironment. Allogeneic murine fetal liver cells have very good long-term engraftment (49.9% donor cells in peripheral blood 16 weeks after transplantation). Compared to the rodents, the sheep model has the advantage of body size and gestation comparable to the human fetus. Here, ultrasound-guided injection techniques significantly decreased fetal loss rates. In contrast to the murine in utero model, the repopulation capacities of allogeneic ovine fetal liver cells are lower (0.112% donor cells in peripheral blood 3 weeks after transplantation). The effect of MHC on engraftment levels seems to be marginal, since no differences could be observed between autologous and allogeneic transplantation (0.117% donor cells vs 0.112% donor cells in peripheral blood 1 to 2 weeks after transplantation). Further research is needed to study optimal timing and graft composition as well as immunological aspects of in utero transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the phenotype of mice with targeted disruption of the Trpv6 (Trpv6 KO) epithelial calcium channel. The mice exhibit disordered Ca(2+) homeostasis, including defective intestinal Ca(2+) absorption, increased urinary Ca(2+) excretion, decreased BMD, deficient weight gain, and reduced fertility. Although our Trpv6 KO affects the closely adjacent EphB6 gene, the phenotype reported here is not related to EphB6 dysfunction. INTRODUCTIOn: The mechanisms underlying intestinal Ca(2+) absorption are crucial for overall Ca(2+) homeostasis, because diet is the only source of all new Ca(2+) in the body. Trpv6 encodes a Ca(2+)-permeable cation channel responsible for vitamin D-dependent intestinal Ca(2+) absorption. Trpv6 is expressed in the intestine and also in the skin, placenta, kidney, and exocrine organs. MATERIALS AND METHODS: To determine the in vivo function of TRPV6, we generated mice with targeted disruption of the Trpv6 (Trpv6 KO) gene. RESULTS: Trpv6 KO mice are viable but exhibit disordered Ca(2+) homeostasis, including a 60% decrease in intestinal Ca(2+) absorption, deficient weight gain, decreased BMD, and reduced fertility. When kept on a regular (1% Ca(2+)) diet, Trpv6 KO mice have deficient intestinal Ca(2+) absorption, despite elevated levels of serum PTH (3.8-fold) and 1,25-dihydroxyvitamin D (2.4-fold). They also have decreased urinary osmolality and increased Ca(2+) excretion. Their serum Ca(2+) is normal, but when challenged with a low (0.25%) Ca(2+) diet, Trpv6 KO mice fail to further increase serum PTH and vitamin D, ultimately developing hypocalcemia. Trpv6 KO mice have normal urinary deoxypyridinoline excretion, although exhibiting a 9.3% reduction in femoral mineral density at 2 months of age, which is not restored by treatment for 1 month with a high (2%) Ca(2+) "rescue" diet. In addition to their deranged Ca(2+) homeostasis, the skin of Trpv6 KO mice has fewer and thinner layers of stratum corneum, decreased total Ca(2+) content, and loss of the normal Ca(2+) gradient. Twenty percent of all Trpv6 KO animals develop alopecia and dermatitis. CONCLUSIONS: Trpv6 KO mice exhibit an array of abnormalities in multiple tissues/organs. At least some of these are caused by tissue-specific mechanisms. In addition, the kidneys and bones of Trpv6 KO mice do not respond to their elevated levels of PTH and 1,25-dihydroxyvitamin D. These data indicate that the TRPV6 channel plays an important role in Ca(2+) homeostasis and in other tissues not directly involved in this process.