17 resultados para PALLADIUM CATALYSIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTENTS. 1. Did life begin with catalytic RNA?–2. Self-splicing and self-cleaving RNAs–2.1 Self-splicing of group I introns – 2.2 Self-splicing of group II introns – 2.3 Self-cleaving RNAs–3. Splicing mediated by trans-acting factors–3.1 Group III introns – 3.2 Splicing of nuclear pre-mRNAs – 3.3 Trans-splicing – 3.4 Is nuclear pre-mRNA splicing evolutionarily related to group I and group II self-splicing?– 3.5 Non-RNA mediated splicing of tRNAs–4. Processing of ribosomal precursor RNAs–5. Processing of pre-mRNA 3′ ends–5.1 Polyadenylation – 5.2 Histone pre-mRNA 3′ processing–6. Other RNPs involved in metabolic mechanisms–6.1 5′ end processing of pre-tRNAs by RNase P – 6.2 The signal recognition particle – 6.3 Telomerase – 6.4 RNA editing in trypanosomatid mitochondria–7. Why RNA?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of ubiquitous nucleosynthetic isotope anomalies in meteorites may represent spatial and/or temporal heterogeneity in the sources that supplied material to the nascent solar nebula, or enhancement by chemical processing. For elements beyond the Fe peak, deficits in s-process isotopes have been reported in some (e.g., Mo, Ru, W) but not all refractory elements studied (e.g., Os) that, among the iron meteorites, are most pronounced in IVB iron meteorites. Palladium is a non-refractory element in the same mass region as Mo and Ru. In this study, we report the first precise Pd isotopic abundances from IVB irons to test the mechanisms proposed for the origin of isotope anomalies. First, this study determined the existence of a cosmogenic neutron dosimeter from the reaction 103Rh(n, beta-)104Pd in the form of excess 104Pd, correlated with excess 192Pt, in IVB irons. Second, all IVB irons show a deficit of the s-process only isotope 104Pd (\varepsilon 104Pd = -0.48 ± 0.24), an excess of the r-only isotope 110Pd (\varepsilon 110Pd = +0.46 ± 0.12), and no resolvable anomaly in the p-process 102Pd (\varepsilon 102Pd = +1 ± 1). The magnitude of the Pd isotope anomaly is about half that predicted from a uniform depletion of the s-process yields from the correlated isotope anomalies of refractory Mo and Ru. The discrepancy is best understood as the result of nebular processing of the less refractory Pd, implying that all the observed nucleosynthetic anomalies in meteorites are likely to be isotopic relicts. The Mo-Ru-Pd isotope systematics do not support enhanced rates of the 22Ne(alpha,n)25Mg neutron source for the solar system s-process.