58 resultados para OpenCV Computer Vision Object Detection Automatic Counting


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer vision-based food recognition could be used to estimate a meal's carbohydrate content for diabetic patients. This study proposes a methodology for automatic food recognition, based on the Bag of Features (BoF) model. An extensive technical investigation was conducted for the identification and optimization of the best performing components involved in the BoF architecture, as well as the estimation of the corresponding parameters. For the design and evaluation of the prototype system, a visual dataset with nearly 5,000 food images was created and organized into 11 classes. The optimized system computes dense local features, using the scale-invariant feature transform on the HSV color space, builds a visual dictionary of 10,000 visual words by using the hierarchical k-means clustering and finally classifies the food images with a linear support vector machine classifier. The system achieved classification accuracy of the order of 78%, thus proving the feasibility of the proposed approach in a very challenging image dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is great demand for easily-accessible, user-friendly dietary self-management applications. Yet accurate, fully-automatic estimation of nutritional intake using computer vision methods remains an open research problem. One key element of this problem is the volume estimation, which can be computed from 3D models obtained using multi-view geometry. The paper presents a computational system for volume estimation based on the processing of two meal images. A 3D model of the served meal is reconstructed using the acquired images and the volume is computed from the shape. The algorithm was tested on food models (dummy foods) with known volume and on real served food. Volume accuracy was in the order of 90 %, while the total execution time was below 15 seconds per image pair. The proposed system combines simple and computational affordable methods for 3D reconstruction, remained stable throughout the experiments, operates in near real time, and places minimum constraints on users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a method that synchronizes two video sequences is proposed. Unlike previous methods, which require the existence of correspondences between features tracked in the two sequences, and/or that the cameras are static or jointly moving, the proposed approach does not impose any of these constraints. It works when the cameras move independently, even if different features are tracked in the two sequences. The assumptions underlying the proposed strategy are that the intrinsic parameters of the cameras are known and that two rigid objects, with independent motions on the scene, are visible in both sequences. The relative motion between these objects is used as clue for the synchronization. The extrinsic parameters of the cameras are assumed to be unknown. A new synchronization algorithm for static or jointly moving cameras that see (possibly) different parts of a common rigidly moving object is also proposed. Proof-of-concept experiments that illustrate the performance of these methods are presented, as well as a comparison with a state-of-the-art approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Central and peripheral vision is needed for object detection. Previous research has shown that visual target detection is affected by age. In addition, light conditions also influence visual exploration. The aim of the study was to investigate the effects of age and different light conditions on visual exploration behavior and on driving performance during simulated driving. METHODS: A fixed-base simulator with 180 degree field of view was used to simulate a motorway route under daylight and night conditions to test 29 young subjects (25-40 years) and 27 older subjects (65-78 years). Drivers' eye fixations were analyzed and assigned to regions of interests (ROI) such as street, road signs, car ahead, environment, rear view mirror, side mirror left, side mirror right, incoming car, parked car, road repair. In addition, lane-keeping and driving speed were analyzed as a measure of driving performance. RESULTS: Older drivers had longer fixations on the task relevant ROI, but had a lower frequency of checking mirrors when compared to younger drivers. In both age groups, night driving led to a less fixations on the mirror. At the performance level, older drivers showed more variation in driving speed and lane-keeping behavior, which was especially prominent at night. In younger drivers, night driving had no impact on driving speed or lane-keeping behavior. CONCLUSIONS: Older drivers' visual exploration behavior are more fixed on the task relevant ROI, especially at night, when driving performance becomes more heterogeneous than in younger drivers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a weakly supervised method to arrange images of a given category based on the relative pose between the camera and the object in the scene. Relative poses are points on a sphere centered at the object in a given canonical pose, which we call object viewpoints. Our method builds a graph on this sphere by assigning images with similar viewpoint to the same node and by connecting nodes if they are related by a small rotation. The key idea is to exploit a large unlabeled dataset to validate the likelihood of dominant 3D planes of the object geometry. A number of 3D plane hypotheses are evaluated by applying small 3D rotations to each hypothesis and by measuring how well the deformed images match other images in the dataset. Correct hypotheses will result in deformed images that correspond to plausible views of the object, and thus will likely match well other images in the same category. The identified 3D planes are then used to compute affinities between images related by a change of viewpoint. We then use the affinities to build a view graph via a greedy method and the maximum spanning tree.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, observations of space debris are primarily performed with ground-based sensors. These sensors have a detection limit at some centimetres diameter for objects in Low Earth Orbit (LEO) and at about two decimetres diameter for objects in Geostationary Orbit (GEO). The few space-based debris observations stem mainly from in-situ measurements and from the analysis of returned spacecraft surfaces. Both provide information about mostly sub-millimetre-sized debris particles. As a consequence the population of centimetre- and millimetre-sized debris objects remains poorly understood. The development, validation and improvement of debris reference models drive the need for measurements covering the whole diameter range. In 2003 the European Space Agency (ESA) initiated a study entitled “Space-Based Optical Observation of Space Debris”. The first tasks of the study were to define user requirements and to develop an observation strategy for a space-based instrument capable of observing uncatalogued millimetre-sized debris objects. Only passive optical observations were considered, focussing on mission concepts for the LEO, and GEO regions respectively. Starting from the requirements and the observation strategy, an instrument system architecture and an associated operations concept have been elaborated. The instrument system architecture covers the telescope, camera and onboard processing electronics. The proposed telescope is a folded Schmidt design, characterised by a 20 cm aperture and a large field of view of 6°. The camera design is based on the use of either a frame-transfer charge coupled device (CCD), or on a cooled hybrid sensor with fast read-out. A four megapixel sensor is foreseen. For the onboard processing, a scalable architecture has been selected. Performance simulations have been executed for the system as designed, focussing on the orbit determination of observed debris particles, and on the analysis of the object detection algorithms. In this paper we present some of the main results of the study. A short overview of the user requirements and observation strategy is given. The architectural design of the instrument is discussed, and the main tradeoffs are outlined. An insight into the results of the performance simulations is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Correspondence establishment is a key step in statistical shape model building. There are several automated methods for solving this problem in 3D, but they usually can only handle objects with simple topology, like that of a sphere or a disc. We propose an extension to correspondence establishment over a population based on the optimization of the minimal description length function, allowing considering objects with arbitrary topology. Instead of using a fixed structure of kernel placement on a sphere for the systematic manipulation of point landmark positions, we rely on an adaptive, hierarchical organization of surface patches. This hierarchy can be built on surfaces of arbitrary topology and the resulting patches are used as a basis for a consistent, multi-scale modification of the surfaces' parameterization, based on point distribution models. The feasibility of the approach is demonstrated on synthetic models with different topologies.

Relevância:

100.00% 100.00%

Publicador: