76 resultados para Open cluster and associations: individual: Alicante 6
Resumo:
The isostructural title compounds, {(C7H7N2)2[SnI4]}n, (1), and {(C7H5F2N2)2[SnI4]}n, (2), show a layered perovskite-type structure composed of anionic {[SnI4]2-}n sheets parallel to (100), which are decorated on both sides with templating benzimidazolium or 5,6-difluorobenzimidazolium cations, respectively. These planar organic heterocycles mainly form N-H...I hydrogen bonds to the terminal I atoms of the corner-sharing [SnI6] octahedra (point group symmetry 2) from the inorganic layer, but not to the bridging ones. This is in contrast to most of the reported structures of related compounds where ammonium cations are involved. Here hydrogen bonding to both types of iodine atoms and thereby a distortion of the inorganic layers to various extents is observed. For (1) and (2), all Sn-I-Sn angles are linear and no out-of-plane distortions of the inorganic layers occur, a fact of relevance in view of the material properties. The arrangement of the aromatic cations is mainly determined through the direction of the N-H...I hydrogen bonds. The coherence between organic bilayers along [100] is mainly achieved through van der Waals interactions.
Resumo:
A protected S-acetylthio porphyrin was synthesized and attached to the Au38(2-phenylethanethiolate)24 cluster in a ligand exchange reaction. Chiral high performance liquid chromatography of the functionalized cluster yielded enantiomeric pairs of clusters probably differing in the binding site of the porphyrin. As proven by circular dichroism, the chirality was maintained. Exciton coupling between the cluster and the chromophore is observed. Zinc can be incorporated into the porphyrin attached to the cluster, as evidenced by absorption and fluorescence spectroscopy, however, the reaction is slow. Quenching of the chromophore fluorescence is observed, which can be explained by energy transfer from the porphyrin to the cluster. Transient absorption spectra of Au38(2-phenylethanethiolate)24 and the functionalized cluster probe the bleach of the gold cluster due to ground state absorption and the characteristic excited state absorption signals. Zinc incorporation does not have a pronounced effect on the photophysical behaviour. Decay times are typical for the molecular behaviour of small monolayer protected gold clusters.
Resumo:
BACKGROUND A recombinant, replication-competent vesicular stomatitis virus-based vaccine expressing a surface glycoprotein of Zaire Ebolavirus (rVSV-ZEBOV) is a promising Ebola vaccine candidate. We report the results of an interim analysis of a trial of rVSV-ZEBOV in Guinea, west Africa. METHODS For this open-label, cluster-randomised ring vaccination trial, suspected cases of Ebola virus disease in Basse-Guinée (Guinea, west Africa) were independently ascertained by Ebola response teams as part of a national surveillance system. After laboratory confirmation of a new case, clusters of all contacts and contacts of contacts were defined and randomly allocated 1:1 to immediate vaccination or delayed (21 days later) vaccination with rVSV-ZEBOV (one dose of 2 × 10(7) plaque-forming units, administered intramuscularly in the deltoid muscle). Adults (age ≥18 years) who were not pregnant or breastfeeding were eligible for vaccination. Block randomisation was used, with randomly varying blocks, stratified by location (urban vs rural) and size of rings (≤20 vs >20 individuals). The study is open label and masking of participants and field teams to the time of vaccination is not possible, but Ebola response teams and laboratory workers were unaware of allocation to immediate or delayed vaccination. Taking into account the incubation period of the virus of about 10 days, the prespecified primary outcome was laboratory-confirmed Ebola virus disease with onset of symptoms at least 10 days after randomisation. The primary analysis was per protocol and compared the incidence of Ebola virus disease in eligible and vaccinated individuals in immediate vaccination clusters with the incidence in eligible individuals in delayed vaccination clusters. This trial is registered with the Pan African Clinical Trials Registry, number PACTR201503001057193. FINDINGS Between April 1, 2015, and July 20, 2015, 90 clusters, with a total population of 7651 people were included in the planned interim analysis. 48 of these clusters (4123 people) were randomly assigned to immediate vaccination with rVSV-ZEBOV, and 42 clusters (3528 people) were randomly assigned to delayed vaccination with rVSV-ZEBOV. In the immediate vaccination group, there were no cases of Ebola virus disease with symptom onset at least 10 days after randomisation, whereas in the delayed vaccination group there were 16 cases of Ebola virus disease from seven clusters, showing a vaccine efficacy of 100% (95% CI 74·7-100·0; p=0·0036). No new cases of Ebola virus disease were diagnosed in vaccinees from the immediate or delayed groups from 6 days post-vaccination. At the cluster level, with the inclusion of all eligible adults, vaccine effectiveness was 75·1% (95% CI -7·1 to 94·2; p=0·1791), and 76·3% (95% CI -15·5 to 95·1; p=0·3351) with the inclusion of everyone (eligible or not eligible for vaccination). 43 serious adverse events were reported; one serious adverse event was judged to be causally related to vaccination (a febrile episode in a vaccinated participant, which resolved without sequelae). Assessment of serious adverse events is ongoing. INTERPRETATION The results of this interim analysis indicate that rVSV-ZEBOV might be highly efficacious and safe in preventing Ebola virus disease, and is most likely effective at the population level when delivered during an Ebola virus disease outbreak via a ring vaccination strategy. FUNDING WHO, with support from the Wellcome Trust (UK); Médecins Sans Frontières; the Norwegian Ministry of Foreign Affairs through the Research Council of Norway; and the Canadian Government through the Public Health Agency of Canada, Canadian Institutes of Health Research, International Development Research Centre, and Department of Foreign Affairs, Trade and Development.
Resumo:
The momentary, global functional state of the brain is reflected by its electric field configuration. Cluster analytical approaches consistently extracted four head-surface brain electric field configurations that optimally explain the variance of their changes across time in spontaneous EEG recordings. These four configurations are referred to as EEG microstate classes A, B, C, and D and have been associated with verbal/phonological, visual, attention reorientation, and subjective interoceptive-autonomic processing, respectively. The present study tested these associations via an intra-individual and inter-individual analysis approach. The intra-individual approach tested the effect of task-induced increased modality-specific processing on EEG microstate parameters. The inter-individual approach tested the effect of personal modality-specific parameters on EEG microstate parameters. We obtained multichannel EEG from 61 healthy, right-handed, male students during four eyes-closed conditions: object-visualization, spatial-visualization, verbalization (6 runs each), and resting (7 runs). After each run, we assessed participants' degrees of object-visual, spatial-visual, and verbal thinking using subjective reports. Before and after the recording, we assessed modality-specific cognitive abilities and styles using nine cognitive tests and two questionnaires. The EEG of all participants, conditions, and runs was clustered into four classes of EEG microstates (A, B, C, and D). RMANOVAs, ANOVAs and post-hoc paired t-tests compared microstate parameters between conditions. TANOVAs compared microstate class topographies between conditions. Differences were localized using eLORETA. Pearson correlations assessed interrelationships between personal modality-specific parameters and EEG microstate parameters during no-task resting. As hypothesized, verbal as opposed to visual conditions consistently affected the duration, occurrence, and coverage of microstate classes A and B. Contrary to associations suggested by previous reports, parameters were increased for class A during visualization, and class B during verbalization. In line with previous reports, microstate D parameters were increased during no-task resting compared to the three internal, goal-directed tasks. Topographic differences between conditions concerned particular sub-regions of components of the metabolic default mode network. Modality-specific personal parameters did not consistently correlate with microstate parameters except verbal cognitive style which correlated negatively with microstate class A duration and positively with class C occurrence. This is the first study that aimed to induce EEG microstate class parameter changes based on their hypothesized functional significance. Beyond, the associations of microstate classes A and B with visual and verbal processing, respectively and microstate class D with interoceptive-autonomic processing, our results suggest that a finely-tuned interplay between all four EEG microstate classes is necessary for the continuous formation of visual and verbal thoughts, as well as interoceptive-autonomic processing. Our results point to the possibility that the EEG microstate classes may represent the head-surface measured activity of intra-cortical sources primarily exhibiting inhibitory functions. However, additional studies are needed to verify and elaborate on this hypothesis.
Resumo:
Little is known about how children learn to associate numbers with their corresponding magnitude and about individual characteristics contributing to performance differences on the numerical magnitude tasks within a relatively homogenous sample of 6-year-olds. The present study investigated the relationships between components of executive function and two different numerical magnitude skills in a sample of 162 kindergartners. The Symbolic Number Line was predicted by verbal updating and switching, whereas the Symbolic Magnitude Comparison was predicted by inhibition. Both symbolic tasks were predicted by visuo-spatial updating. Current findings suggest that visuo-spatial updating underlies young children’s retrieval and processing of numbers’ magnitude.
Resumo:
Children who experience adverse reactions to cow's milk or who have diseases predisposing them to low bone mass are often prescribed a supplementation of calcium and vitamin D(3), but adherence can be poor. Age-specific preferences for different formulations may exist and at least partially explain poor compliance.
Resumo:
Monte Carlo (MC) based dose calculations can compute dose distributions with an accuracy surpassing that of conventional algorithms used in radiotherapy, especially in regions of tissue inhomogeneities and surface discontinuities. The Swiss Monte Carlo Plan (SMCP) is a GUI-based framework for photon MC treatment planning (MCTP) interfaced to the Eclipse treatment planning system (TPS). As for any dose calculation algorithm, also the MCTP needs to be commissioned and validated before using the algorithm for clinical cases. Aim of this study is the investigation of a 6 MV beam for clinical situations within the framework of the SMCP. In this respect, all parts i.e. open fields and all the clinically available beam modifiers have to be configured so that the calculated dose distributions match the corresponding measurements. Dose distributions for the 6 MV beam were simulated in a water phantom using a phase space source above the beam modifiers. The VMC++ code was used for the radiation transport through the beam modifiers (jaws, wedges, block and multileaf collimator (MLC)) as well as for the calculation of the dose distributions within the phantom. The voxel size of the dose distributions was 2mm in all directions. The statistical uncertainty of the calculated dose distributions was below 0.4%. Simulated depth dose curves and dose profiles in terms of [Gy/MU] for static and dynamic fields were compared with the corresponding measurements using dose difference and γ analysis. For the dose difference criterion of ±1% of D(max) and the distance to agreement criterion of ±1 mm, the γ analysis showed an excellent agreement between measurements and simulations for all static open and MLC fields. The tuning of the density and the thickness for all hard wedges lead to an agreement with the corresponding measurements within 1% or 1mm. Similar results have been achieved for the block. For the validation of the tuned hard wedges, a very good agreement between calculated and measured dose distributions was achieved using a 1%/1mm criteria for the γ analysis. The calculated dose distributions of the enhanced dynamic wedges (10°, 15°, 20°, 25°, 30°, 45° and 60°) met the criteria of 1%/1mm when compared with the measurements for all situations considered. For the IMRT fields all compared measured dose values agreed with the calculated dose values within a 2% dose difference or within 1 mm distance. The SMCP has been successfully validated for a static and dynamic 6 MV photon beam, thus resulting in accurate dose calculations suitable for applications in clinical cases.
Resumo:
The aim of this study has been to compare the clinical and radiographic outcome of periodontal intrabony defect treatment by open flap debridement alone or in combination with nanocrystalline hydroxyapatite bone substitute application. Thirty patients diagnosed with advanced periodontits were divided into two groups: the control group (OFD), in which an open flap debridement procedure was performed and the test group (OFD+NHA), in which defects were additionally filled with nanocrystalline hydroxyapatite bone substitute material. Plaque index (PI), gingival index (GI), bleeding on probing (BOP), pocket depth (PD), gingival recession (GR) and clinical attachment level (CAL) were measured prior to, then 6 and 12months following treatment. Radiographic depth and width of defects were also evaluated. There were no differences in any clinical and radiographic parameters between the examined groups prior to treatment. After treatment, BOP, GI, PD, CAL, radiographic depth and width parameter values improved statistically significantly in both groups. The PI value did not change, but the GR value increased significantly after treatment. There were no statistical differences in evaluated parameters between OFD and OFD+NHA groups 6 and 12months after treatment. Within the limits of the study, it can be concluded that the additional use of nanocrystalline hydroxyapatite bone substitute material after open flap procedure does not improve clinical and radiographic treatment outcome.
Resumo:
BACKGROUND: Chronic pain is an important outcome variable after inguinal hernia repair that is generally not assessed by objective methods. The aim of this study was to objectively investigate chronic pain and hypoesthesia after inguinal hernia repair using three types of operation: open suture, open mesh, and laparoscopic. METHODS: A total of 96 patients were included in the study with a median follow-up of 4.7 years. Open suture repair was performed in 40 patients (group A), open mesh repair in 20 patients (group B), and laparoscopic repair in 36 patients (group C). Hypoesthesia and pain were assessed using von Frey monofilaments. Quality of life was investigated with Short Form 36. RESULTS: Pain occurring at least once a week was found in 7 (17.5%) patients of group A, in 5 (25%) patients of group B, and in 6 (16.6%) patients of group C. Area and intensity of hyposensibility were increased significantly after open nonmesh and mesh repair compared to those after laparoscopy (p = 0.01). Hyposensibility in patients who had laparoscopic hernia repair was significantly associated with postoperative pain (p = 0.03). Type of postoperative pain was somatic in 19 (61%), neuropathic in 9 (29%), and visceral in 3 (10%) patients without significant differences between the three groups. CONCLUSIONS: The incidence of hypoesthesia in patients who had laparoscopic hernia repair is significantly lower than in those who had open hernia repair. Hypoesthesia after laparoscopic but not after open repair is significantly associated with postoperative pain. Von Frey monofilaments are important tools for the assessment of inguinal hypoesthesia and pain in patients who had inguinal hernia repair allowing quantitative and qualitative comparison between various surgical techniques.
Resumo:
Decreased heart rate variability (HRV) has been associated with an increased risk of atherosclerosis. We hypothesized that a decrease in frequency domains of resting HRV would be associated with elevated plasma levels of interleukin (IL)-6 and soluble tissue factor (sTF) both previously shown to prospectively predict atherothrombotic events in healthy subjects. Subjects were 102 healthy and unmedicated black and white middle-aged men and women. We determined IL-6 and sTF antigen in plasma and HRV measures from surface electrocardiogram data using spectral analysis. All statistical analyses controlled for age, gender, ethnicity, smoking status, blood pressure, and body mass index. Low amounts of low frequency (LF) power (beta=-0.31, p=0.007) and high frequency (HF) power (beta=-0.36, p=0.002) were associated with increased amounts of IL-6, explaining 7% and 9% of the variance, respectively. Interactions between LF power and IL-6 (p=0.002) and between HF power and IL-6 (p=0.012) explained 8% and 5%, respectively, of the variance in sTF. Post hoc analyses showed associations between IL-6 and sTF when LF power (beta=0.51, p<0.001) and HF power (beta=0.48, p<0.001) were low but not when LF power and high HF power were high. The findings suggest that systemic low-grade inflammatory activity is associated with a decrease in HRV. Furthermore, there was a positive relationship between plasma levels of IL-6 and sTF antigen when HRV was low. Inflammation and related hypercoagulability might particularly contribute to atherothrombotic events in a setting of decreased HRV.
Resumo:
Introduction. Prospective Memory (PM), defined as the ability to remember to perform intended activities at some point in the future (Kliegel & Jäger, 2007), is crucial to succeed in everyday life. PM seems to increase over the childhood years (Zimmermann & Meier, 2006), but yet little is known about PM competences in children in general, but also about factors that influence its development. Currently, a number of studies has focused on factors that might influence PM performance, with EF being potentially influencing mechanisms (Ford, Driscoll, Shum & Macaulay, 2012; Mahy & Moses, 2011). Also metacognitive processes (MC: monitoring and control) are assumed to be involved while learning or optimizing one’s performance (Krebs & Roebers, 2010; 2012; Roebers, Schmid, & Roderer, 2009). Yet, the empirical relation between PM, EF and MC remains rather unclear. We intend to examine relations and explain individual differences in PM performance. Method. An empirical cross-sectional study on 120 2nd graders will be presented. Participants completed six EF tasks (a Stroop, two Updating Tasks, two Shifting Tasks, a Flanker Task), a computerised event-based PM Task and a MC spelling task. Children were tested individually in two sessions of 30 minutes each. Each of the three EF components defined by Miyake, Friedman, Emerson, Witzki & Howerter (2002) was represented by two variables. PM performance was represented by PM accuracy. Metacognitive processes (control, monitoring) were represented separately. Results. Preliminary analyses (SEM) indicate a substantial association between EF (updating, inhibition) and PM. Further, MC seems to be significantly related only to EF. We will explore whether metacognitive monitoring is related to PM monitoring (Roebers, 2002; Mantylä, 2007). As to EF and MC, we expect the two domains to be empirically well distinguishable and nevertheless substantially interrelated. Discussion. The results are discussed on a broader and interindividual level.