49 resultados para Oc
Resumo:
A genome-wide scan was performed to detect quantitative trait loci (QTLs) for osteochondrosis (OC) and osteochondrosis dissecans (OCD) in horses. The marker set comprised 260 microsatellites. We collected data from 211 Hanoverian warmblood horses consisting of 14 paternal half-sib families. Traits used were OC (fetlock and/or hock joints affected), OCD (fetlock and/or hock joints affected), fetlock OC, fetlock OCD, hock OC, and hock OCD. The first genome scan included 172 microsatellite markers. In a second step 88 additional markers were chosen to refine putative QTLs found in the first scan. Genome-wide significant QTLs were located on equine chromosomes 2, 4, 5, and 16. QTLs for fetlock OC and hock OC partly overlapped on the same chromosomes, indicating that these traits may be genetically related. QTLs reached the chromosome-wide significance level on eight different equine chromosomes: 2, 3, 4, 5, 15, 16, 19, and 21. This whole-genome scan was a first step toward the identification of candidate genome regions harboring genes responsible for equine OC. Further investigations are necessary to refine the map positions of the QTLs already identified for OC.
Resumo:
The aim of this study was to identify quantitative trait loci (QTL) for osteochondrosis (OC) and palmar/plantar osseous fragments (POF) in fetlock joints in a whole-genome scan of 219 South German Coldblood horses. Symptoms of OC and POF were checked by radiography in 117 South German Coldblood horses at a mean age of 17 months. The radiographic examination comprised the fetlock and hock joints of all limbs. The genome scan included 157 polymorphic microsatellite markers. All microsatellite markers were equally spaced over the 31 autosomes and the X chromosome, with an average distance of 17.7 cM and a mean polymorphism information content (PIC) of 63%. Sixteen chromosomes harbouring putative QTL regions were further investigated by genotyping the animals with 93 additional markers. QTL that had chromosome-wide significance by non-parametric Z-means and LOD scores were found on 10 chromosomes. This included seven QTL for fetlock OC and one QTL on ECA18 associated with hock OC and fetlock OC. Significant QTL for POF in fetlock joints were located on equine chromosomes 1, 4, 8, 12 and 18. This genome scan is an important step towards the identification of genes responsible for OC in horses.
Resumo:
In climate research the interest on carbonaceous particles has increased over the last years because of their influence on the radiation balance of the earth. Nevertheless, there is a paucity of available data regarding their concentrations and sources in the past. Such data would be important for a better understanding of their effects and for estimating their influence on future climate. Here, a technique is described to extract carbonaceous particles from ice core samples with subsequent separation of the two main constituents into organic carbon (OC) and elemental carbon (EC) for analysis of their concentrations in the past. This is combined with further analysis of OC and EC 14C/12C ratios by accelerator mass spectrometry (AMS), what can be used for source apportionment studies of past emissions. We further present how 14C analysis of the OC fraction could be used in the future to date any ice core extracted from a high-elevation glacier. Described sample preparation steps to final analysis include the combustion of micrograms of water–insoluble carbonaceous particles, primary collected by filtration of melted ice samples, the graphitisation of the obtained CO2 to solid AMS target material and final AMS measurements. Possible fractionation processes were investigated for quality assurance. Procedural blanks were reproducible and resulted in carbon masses of 1.3 ± 0.6 μg OC and 0.3 ± 0.1 μg EC per filter. The determined fraction of modern carbon (fM) for the OC blank was 0.61 ± 0.13. The analysis of processed IAEA-C6 and IAEA-C7 reference material resulted in fM = 1.521 ± 0.011 and δ13C = −10.85 ± 0.19‰, and fM = 0.505 ± 0.011 and δ13C = −14.21 ± 0.19‰, respectively, in agreement with consensus values. Initial carbon contents were thereby recovered with an average yield of 93%.
Resumo:
The objective of this study was to investigate clinical signs indicating hereditary diseases like equine sarcoid, osteochondrosis (OC) and the idiopathic laryngeal hemiplegia (ILH), and to demonstrate relationships between environment, feeding habits and conformation ("exterieur" evaluation) of the horses. For this purpose, we analyzed veterinary examinations of 403 stallions at the approvals since 1994 examined 493 three-year-old Swiss Warmblood horses, which were shown at the Swiss-Field-Tests in 2005.With the help of the owners a questionnaire on health, environment and feeding habits of the animals was completed. At the same time, the horses were assessed and graded for their "exterieur" (type, conformation, gaits) by judges of the Swiss Sporthorse breeding association. In 11.5% of horses sarcoids were found, 8.7% showed one and 2.8% several tumors.The prevalence of sarcoids in offspring of sires with known sarcoids was not significantly higher than in descendants from stallions without a known history of sarcoids. We found distended joints as a possible symptom of OC in 11.4% of the horses, 3.9% (n = 19) in both tarsal joints.We did not find a relationship between enlarged joints in the offspring and the presence of OC in the sires. Abnormal respiratory noise at work, as a possible sign for ILH, was heard only in 1.2% (n = 6). It is important to note that while we found a high number of sarcoid affected horses compared to other studies, presence of enlarged joints was not very frequent and very few horses showed abnormal respiratory noise. Additionally, we found no correlation between "exterieur" marks and the horse's general health.
Resumo:
AIM: To compare intraoral occlusal (OC) and periapical (PA) radiographs vs. limited cone beam computed tomography (CBCT) in diagnosing root-fractured permanent teeth. MATERIAL AND METHODS: In 38 patients (mean age 24 years, range 8-52 years) with 44 permanent teeth with horizontal root fractures, intraoral radiographs (PA and OC) and limited CBCT were used to evaluate the location (apical, middle, cervical third of the root) and angulation of the fracture line. Furthermore, the conventional radiographs and CBCT images were compared for concordance of fracture location. RESULTS: In the PA and OC radiographs, 28 fractures (63.6%) were located in the middle third of the root, 11 (25.0%) in the apical third and 5 (11.4%) in the cervical third. The PA/OC radiographs and the sagittal CBCT images (facial aspect) yielded the same level of root fracture in 70.5% of cases (31 teeth; 95% CI: 54.1-82.7%). The PA/OC radiographs and sagittal CBCT images (palatal aspect) showed the same level of root fracture in 31.8% of cases. There was a statistically significant association between the angle at which the root fracture line intersected the axis of the tooth and the level of root fracture in the facial aspect of the sagittal CBCT images. CONCLUSIONS: The diagnosis of the location and angulation of root fractures based on limited CBCT imaging differs significantly from diagnostic procedures based on intraoral radiographs (PA/OC) alone. The clinical significance for treatment strategies and for the prognosis of root-fractured teeth has to be addressed in future studies.
Resumo:
PURPOSE: The purpose of this study is to review the Chinese-language medical and dental literature from 1982 to 2008 on oral manifestations (OMs) of patients with HIV/AIDS for introducing the spectrum of OMs of the patients in China. MATERIALS AND METHODS: All data were extracted from 18 references which had used diagnostic criteria for HIV/AIDS. Four of the references had used the EC-Clearinghouse classification for oral lesions in HIV infection. The feasible overall rate and 95% confidence interval (95%CI) of the data on OMs were calculated. RESULTS: Risk group analysis revealed that, of 203 patients, 64.3% were men and 35.7% were women (age range, 5 months to 64 years; mean age in three studies, 34.0, 34.3, and 36.1 years). Of these patients, 22.2% were infected by sexual contacts, 11.8% by intravenous drug use (IDU), 59.6% by blood or its products, 2.9% by mother to child transmission, and 3.4% were unclear. In 203 patients, oral candidiasis (OC) was the most common lesion (66%, 95%CI = 59.48-72.52%), followed by herpes simplex (HS) (22.2%, 95%CI = 16.48-27.92%), ulcerative stomatitis (14.8%, 95%CI = 9.92-19.68%), salivary gland disease (11.3%, 95%CI = 6.94-15.66%), oral hairy leukoplakia (OHL) (9.8%, 95%CI = 5.71-13.89%), necrotizing gingivitis (5.9%, 95%CI = 2.66-9.14%), Kaposi's sarcoma (2.9%, 95%CI = 0.59-5.21%), other malignant tumors (2.9%, 95%CI = 0.59-5.21%), and linear gingival erythema (2.0%, 95%CI = 0.07-3.93%). CONCLUSIONS: The spectrum of OMs reported from China is similar to that described in the international literature. Present data are useful to supplement international resources of HIV/AIDS research.
Resumo:
Hyperhomocysteinemia (HHCY) has been linked to fragility fractures and osteoporosis. Folate and vitamin B(12) deficiencies are among the main causes of HHCY. However, the impact of these vitamins on bone health has been poorly studied. This study analyzed the effect of folate and vitamin B(12) deficiency on bone in rats. We used two groups of rats: a control group (Co, n = 10) and a vitamin-deficient group (VitDef, n = 10). VitDef animals were fed for 12 wk with a folate- and vitamin B(12)-free diet. Co animals received an equicaloric control diet. Tissue and plasma concentrations of homocysteine (HCY), S-adenosyl-homocysteine (SAH), and S-adenosyl-methionine (SAM) were measured. Bone quality was assessed by biomechanical testing (maximum force of an axial compression test; F(max)), histomorphometry (bone area/total area; B.Ar./T.Ar.], and the measurement of biochemical bone turnover markers (osteocalcin, collagen I C-terminal cross-laps [CTX]). VitDef animals developed significant HHCY (Co versus VitDef: 6.8 +/- 2.7 versus 61.1 +/- 12.8 microM, p < 0.001) that was accompanied by a high plasma concentration of SAH (Co versus VitDef: 24.1 +/- 5.9 versus 86.4 +/- 44.3 nM, p < 0.001). However, bone tissue concentrations of HCY, SAH, and SAM were similar in the two groups. Fmax, B.Ar./T.Ar., OC, and CTX did not differ between VitDef and Co animals, indicating that bone quality was not affected. Folate and vitamin B(12) deficiency induces distinct HHCY but has no effect on bone health in otherwise healthy adult rats. The unchanged HCY metabolism in bone is the most probable explanation for the missing effect of the vitamin-free diet on bone.
Resumo:
Enamel matrix derivative (EMD), a porcine extract harvested from developing porcine teeth, has been shown to promote formation of new cementum, periodontal ligament and alveolar bone. Despite its widespread use, an incredibly large variability among in vitro studies has been observed. The aim of the present study was to determine the influence of EMD on cells at different maturation stages of osteoblast differentiation by testing 6 cell types to determine if cell phenotype plays a role in cell behaviour following treatment with EMD. Six cell types including MC3T3-E1 pre-osteoblasts, rat calvarial osteoblasts, human periodontal ligament (PDL) cells, ROS cells, MG63 cells and human alveolar osteoblasts were cultured in the presence or absence of EMD and proliferation rates were quantified by an MTS assay. Gene expression of collagen1(COL1), alkaline phosphate(ALP) and osteocalcin(OC) were investigated by real-time PCR. While EMD significantly increased cell proliferation of all cell types, its effect on osteoblast differentiation was more variable. EMD significantly up-regulated gene expression of COL1, ALP and OC in cells early in their differentiation process when compared to osteoblasts at later stages of maturation. Furthermore, the effect of cell passaging of primary human PDL cells (passage 2 to 15) was tested in response to treatment with EMD. EMD significantly increased cell proliferation and differentiation of cells at passages 2-5 however had completely lost their ability to respond to EMD by passages 10+. The results from the present study suggest that cell stimulation with EMD has a more pronounced effect on cells earlier in their differentiation process and may partially explain why treatment with EMD primarily favors regeneration of periodontal defects (where the periodontal ligament contains a higher number of undifferentiated progenitor cells) over regeneration of pure alveolar bone defects containing no periodontal ligament and a more limited number of osteoprogenitor cells.
Resumo:
There is much interest in the identification of the main drivers controlling changes in the microbial community that may be related to sustainable land use. We examined the influence of soil properties and land-use intensity (N fertilization, mowing, grazing) on total phospholipid fatty acid (PLFA) biomass, microbial community composition (PLFA profiles) and activities of enzymes involved in the C, N, and P cycle. These relationships were examined in the topsoil of grasslands from three German regions (Schorfheide-Chorin (SCH), Hainich-Dun (HAI), Schwabische Alb (ALB)) with different parent material. Differences in soil properties explained 60% of variation in PLFA data and 81% of variation in enzyme activities across regions and land-use intensities. Degraded peat soils in the lowland areas of the SCH with high organic carbon (OC) concentrations and sand content contained lower PLFA biomass, lower concentrations of bacterial, fungal, and arbuscular mycorrhizal PLFAs, but greater enzyme activities, and specific enzyme activities (per unit microbial biomass) than mineral soils in the upland areas of the HAI and ALB, which are finer textured, drier, and have smaller OC concentrations. After extraction of variation that originated from large-scale differences among regions and differences in land-use intensities between plots, soil properties still explained a significant amount of variation in PLFA data (34%) and enzyme activities (60%). Total PLFA biomass and all enzyme activities were mainly related to OC concentration, while relative abundance of fungi and fungal to bacterial ratio were mainly related to soil moisture. Land-use intensity (LUI) significantly decreased the soil C:N ratio. There was no direct effect of LUI on total PLFA biomass, microbial community composition, N and P cycling enzyme activities independent of study region and soil properties. In contrast, the activities and specific activities of enzymes involved in the C cycle increased significantly with LUI independent of study region and soil properties, which can have impact on soil organic matter decomposition and nutrient cycling. Our findings demonstrate that microbial biomass and community composition as well as enzyme activities are more controlled by soil properties than by grassland management at the regional scale. (C) 2013 Elsevier B.V: All rights reserved.
Resumo:
Context: In virologically suppressed, antiretroviral-treated patients, the effect of switching to tenofovir (TDF) on bone biomarkers compared to patients remaining on stable antiretroviral therapy is unknown. Methods: We examined bone biomarkers (osteocalcin [OC], procollagen type 1 amino-terminal propeptide, and C-terminal cross-linking telopeptide of type 1 collagen) and bone mineral density (BMD) over 48 weeks in virologically suppressed patients (HIV RNA < 50 copies/ml) randomized to switch to TDF/emtricitabine (FTC) or remain on first-line zidovudine (AZT)/lamivudine (3TC). PTH was also measured. Between-group differences in bone biomarkers and associations between change in bone biomarkers and BMD measures were assessed by Student's t tests, Pearson correlation, and multivariable linear regression, respectively. All data are expressed as mean (SD), unless otherwise specified. Results: Of 53 subjects (aged 46.0 y; 84.9% male; 75.5% Caucasian), 29 switched to TDF/FTC. There were reductions in total hip and lumbar spine BMD in those switching to TDF/FTC (total hip, TDF/FTC, −1.73 (2.76)% vs AZT/3TC, −0.39 (2.41)%; between-group P = .07; lumbar spine, TDF/FTC, −1.50 (3.49)% vs AZT/3TC, +0.25 (2.82)%; between-group P = .06), but they did not reach statistical significance. Greater declines in lumbar spine BMD correlated with greater increases in OC (r = −0.28; P = .05). The effect of TDF/FTC on bone biomarkers remained significant when adjusted for baseline biomarker levels, gender, and ethnicity. There was no difference in change in PTH levels over 48 weeks between treatment groups (between-group P = .23). All biomarkers increased significantly from weeks 0 to 48 in the switch group, with no significant change in those remaining on AZT/3TC (between-group, all biomarkers, P < .0001). Conclusion: A switch to TDF/FTC compared to remaining on a stable regimen is associated with increases in bone turnover that correlate with reductions in BMD, suggesting that TDF exposure directly affects bone metabolism in vivo.
Resumo:
Radiocarbon analysis of the carbonaceous aerosol allows an apportionment of fossil and non-fossil sources of airborne particulate matter (PM). A chemical separation of total carbon (TC) into its subfractions organic carbon (OC) and elemental carbon (EC) refines this powerful technique, as OC and EC originate from different sources and undergo different processes in the atmosphere. Although C-14 analysis of TC, EC, and OC has recently gained increasing attention, interlaboratory quality assurance measures have largely been missing, especially for the isolation of EC and OC. In this work, we present results from an intercomparison of 9 laboratories for C-14 analysis of carbonaceous aerosol samples on quartz fiber filters. Two ambient PM samples and 1 reference material (RM 8785) were provided with representative filter blanks. All laboratories performed C-14 determinations of TC and a subset of isolated EC and OC for isotopic measurement. In general, C-14 measurements of TC and OC agreed acceptably well between the laboratories, i.e. for TC within 0.015-0.025 (FC)-C-14 for the ambient filters and within 0.041 (FC)-C-14 for RM 8785. Due to inhomogeneous filter loading, RM 8785 demonstrated only limited applicability as a reference material for C-14 analysis of carbonaceous aerosols. C-14 analysis of EC revealed a large deviation between the laboratories of 28-79 as a consequence of different separation techniques. This result indicates a need for further discussion on optimal methods of EC isolation for C-14 analysis and a second stage of this intercomparison.
Resumo:
In 2010 more than 600 radiocarbon samples were measured with the gas ion source at the MIni CArbon DAting System (MICADAS) at ETH Zurich and the number of measurements is rising quickly. While most samples contain less than 50 mu g C at present, the gas ion source is attractive as well for larger samples because the time-consuming graphitization is omitted. Additionally, modern samples are now measured down to 5 per-mill counting statistics in less than 30 min with the recently improved gas ion source. In the versatile gas handling system, a stepping-motor-driven syringe presses a mixture of helium and sample CO2 into the gas ion source, allowing continuous and stable measurements of different kinds of samples. CO2 can be provided in four different ways to the versatile gas interface. As a primary method. CO2 is delivered in glass or quartz ampoules. In this case, the CO2 is released in an automated ampoule cracker with 8 positions for individual samples. Secondly, OX-1 and blank gas in helium can be provided to the syringe by directly connecting gas bottles to the gas interface at the stage of the cracker. Thirdly, solid samples can be combusted in an elemental analyzer or in a thermo-optical OC/EC aerosol analyzer where the produced CO2 is transferred to the syringe via a zeolite trap for gas concentration. As a fourth method, CO2 is released from carbonates with phosphoric acid in septum-sealed vials and loaded onto the same trap used for the elemental analyzer. All four methods allow complete automation of the measurement, even though minor user input is presently still required. Details on the setup, versatility and applications of the gas handling system are given. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The common appearance of hygroscopic brine (“sweating”) on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water-soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11-month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42−, HCO3−, Na+, and Cl−, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl− (from soil), SO42− (from meteoritic troilite and soil), and iron (meteoritic). “Sweating meteorites” mainly contain Mg2+ and Cl−. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na-rich phase or loss of an efflorescent Na-salt. The total concentrations of water-soluble ions in bulk OCs ranges from 600 to 9000 μg g−1 (median 2500 μg g−1) as compared to 187–14140 μg g−1 in soils (median 1148 μg g−1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 °C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water-soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca-sulfate contamination.
Resumo:
Radiocarbon offers a unique possibility for unambiguous source apportionment of carbonaceous particles due to a direct distinction of non-fossil and fossil carbon. In this work, particulate matter of different size fractions was collected at 4 sites in Switzerland to examine whether fine and coarse carbonaceous particles exhibit different fossil and contemporary sources. Elemental carbon (EC) and organic carbon (OC) as well as water-soluble OC (WSOC) and water-insoluble OC (WINSOC) were separated and determined for subsequent 14C measurement. In general, both fossil and non-fossil fractions in OC and EC were found more abundant in the fine than in the coarse mode. However, a substantial fraction (~20 ± 5%) of fossil EC was found in coarse particles, which could be attributed to traffic-induced non-exhaust emissions. The contribution of biomass burning to coarse-mode EC in winter was relatively high, which is likely associated to the coating of EC with organic and/or inorganic substances emitted from intensive wood burning. Further, fossil OC (i.e. from vehicle emissions) was found to be smaller than non-fossil OC due to the presence of primary biogenic OC and/or growing in size of wood-burning OC particles during aging processes. 14C content in WSOC indicated that the second organic carbon rather stems from non-fossil precursors for all samples. Interestingly, both fossil and non-fossil WINSOC concentrations were found to be higher in fine particles than in coarse particles in winter, which is likely due to primary wood burning emissions and/or secondary formation of WINSOC.
Resumo:
OBJECTIVE We investigated the skeletal growth profile of female rats from birth to senescence (100weeks) on the basis of sequential radiometrical, hormonal and biochemical parameters. DESIGN Weaning rats entered the study which was divided into two sections: a) sequential measurements of vertebral and tibial growths and bone mineral density (BMD), estimation of mineral content of the entire skeleton (BMC) and chemical analysis of vertebral Ca; and b) determination of basal and pulsatile growth hormone (rGH), insulin-like growth hormone (IGF-I), estradiol (E2), parathyroid hormone (PTH), osteocalcin (OC) and urinary d-pyridinoline (dp) throughout the experimental period. RESULTS Vertebral and tibial growths ceased at week 25 whereas BMD and BMC as well as total vertebral Ca exhibited a peak bone mass at week 40. rGH pulsatile profiles were significantly higher in younger animals coinciding with the period of active growth and IGF-I peaked at 7weeks, slowly declining thereafter and stabilizing after week 60. OC and dp closely paralleled IGF-I coinciding with the period of enhanced skeletal growth, remaining thereafter in the low range indicative of reduced bone turnover. E2 increased during reproductive life but the lower values subsequently recorded were still in the physiological range, strongly suggesting a protective role of this steroid on bone remodeling. PTH followed a similar profile to E2, but the significance of this after completion of growth remains unclear. CONCLUSIONS Mechanisms governing skeletal growth in the female rat appear similar to those in humans. Bone progression and attainment of peak bone mass are under simultaneous control of rGH, IGF-I and calciotropic hormones and are modulated by E2. This steroid seems to protect the skeleton from resorption before senescence whereas the role of PTH in this context remains uncertain.