125 resultados para Obstrucción intestinal
Resumo:
Mammals harbor a dense commensal microbiota in the colon. Regulatory T (Treg) cells are known to limit microbe-triggered intestinal inflammation and the CD4+ T cell compartment is shaped by the presence of particular microbes or bacterial compounds. It is, however, difficult to distinguish whether these effects reflect true mutualistic immune adaptation to intestinal colonization or rather idiosyncratic immune responses. To investigate truly mutualistic CD4+ T cell adaptation, we used the altered Schaedler flora (ASF). Intestinal colonization resulted in activation and de novo generation of colonic Treg cells. Failure to activate Treg cells resulted in the induction of T helper 17 (Th17) and Th1 cell responses, which was reversed by wild-type Treg cells. Efficient Treg cell induction was also required to maintain intestinal homeostasis upon dextran sulfate sodium-mediated damage in the colon. Thus, microbiota colonization-induced Treg cell responses are a fundamental intrinsic mechanism to induce and maintain host-intestinal microbial T cell mutualism.
Resumo:
Background Inappropriate cross talk between mammals and their gut microbiota may trigger intestinal inflammation and drive extra-intestinal immune-mediated diseases. Epithelial cells constitute the interface between gut microbiota and host tissue, and may regulate host responses to commensal enteric bacteria. Gnotobiotic animals represent a powerful approach to study bacterial-host interaction but are not readily accessible to the wide scientific community. We aimed at refining a protocol that in a robust manner would deplete the cultivable intestinal microbiota of conventionally raised mice and that would prove to have significant biologic validity. Methodology/Principal Findings Previously published protocols for depleting mice of their intestinal microbiota by administering broad-spectrum antibiotics in drinking water were difficult to reproduce. We show that twice daily delivery of antibiotics by gavage depleted mice of their cultivable fecal microbiota and reduced the fecal bacterial DNA load by 400 fold while ensuring the animals' health. Mice subjected to the protocol for 17 days displayed enlarged ceca, reduced Peyer's patches and small spleens. Antibiotic treatment significantly reduced the expression of antimicrobial factors to a level similar to that of germ-free mice and altered the expression of 517 genes in total in the colonic epithelium. Genes involved in cell cycle were significantly altered concomitant with reduced epithelial proliferative activity in situ assessed by Ki-67 expression, suggesting that commensal microbiota drives cellular proliferation in colonic epithelium. Conclusion We present a robust protocol for depleting conventionally raised mice of their cultivatable intestinal microbiota with antibiotics by gavage and show that the biological effect of this depletion phenocopies physiological characteristics of germ-free mice.
Resumo:
The large production of immunoglobulin (Ig)A is energetically costly. The fact that evolution retained this apparent luxury of intestinal class switch recombination to IgA within the human population strongly indicates that there must be a critical specific function of IgA for survival of the species. The function of IgA has been investigated in a series of different models that will be discussed here. While IgA has clear protective functions against toxins or in the context of intestinal viral infections, the function of IgA specific for non-pathogenic commensal bacteria remains unclear. In the context of the current literature we present a hypothesis where secretory IgA integrates as an additional layer of immune function into the continuum of intestinal CD4 T cell responses, to achieve a mutualistic relationship between the intestinal commensal microbiota and the host.
Resumo:
Salmonella enterica serovar Typhimurium has long been recognised as a zoonotic pathogen of economic significance in animals and humans. Attempts to protect humans and livestock may be based on immunization with vaccines aimed to induce a protective response. We recently demonstrated that the oral administration of a Salmonella enterica serovar Typhimurium strain unable to synthesize the zinc transporter ZnuABC is able to protect mice against systemic salmonellosis induced by a virulent homologous challenge. This finding suggested that this mutant strain could represent an interesting candidate vaccine for mucosal delivery. In this study, the protective effect of this Salmonella strain was tested in a streptomycin-pretreated mouse model of salmonellosis that is distinguished by the capability of evoking typhlitis and colitis. The here reported results demonstrate that mice immunized with Salmonella enterica serovar Typhimurium (S. Typhimurium) SA186 survive to the intestinal challenge and, compared to control mice, show a reduced number of virulent bacteria in the gut, with milder signs of inflammation. This study demonstrates that the oral administration a of S. Typhimurium strain lacking ZnuABC is able to elicit an effective immune response which protects mice against intestinal S. Typhimurium infection. These results, collectively, suggest that the streptomycin-pretreated mouse model of S. typhimurium infection can represent a valuable tool to screen S. typhimurium attenuated mutant strains and potentially help to assess their protective efficacy as potential live vaccines.
Resumo:
A 2-year-old Red Holstein cow was presented with uterine torsion at 235 days of pregnancy. The fetus extracted by cesarean section had weak vital signs and marked abdominal distention. An edematous pouch that contained tubular structures with peristaltic activity was associated with the umbilical cord. Because of poor prognosis, both dam and fetus were euthanized. At necropsy, the fetus had severe distention of the forestomachs, abomasum, and proximal small intestine; absence of distal small intestine, cecum, and proximal colon; atresia of the 2 blind ends of the intestine; and atrophy of distal colon and rectum. The tubular structures associated with the umbilical cord were identified as the segments of intestine that were absent in the fetus. Intestinal atresia combined with ectopia may be caused by local ischemia during temporary herniation and rotation of the fetal gut into the extraembryonic coelom. The close connection between ectopic intestine and amniotic sheath of the umbilical cord in this case may have facilitated vascularization and allowed development and viability of the ectopic intestine.
Resumo:
Glucose supply markedly changes during the transition to extrauterine life. In this study, we investigated diet effects on glucose metabolism in neonatal calves. Calves were fed colostrum (C; n = 7) or milk-based formula (F; n = 7) with similar nutrient content up to d 4 of life. Blood plasma samples were taken daily before feeding and 2 h after feeding on d 4 to measure glucose, lactate, nonesterified fatty acids, protein, urea, insulin, glucagon, and cortisol concentrations. On d 2, additional blood samples were taken to measure glucose first-pass uptake (FPU) and turnover by oral [U-(13)C]-glucose and i.v. [6,6-(2)H(2)]-glucose infusion. On d 3, endogenous glucose production and gluconeogenesis were determined by i.v. [U-(13)C]-glucose and oral deuterated water administration after overnight feed deprivation. Liver tissue was obtained 2 h after feeding on d 4 and glycogen concentration and activities and mRNA abundance of gluconeogenic enzymes were measured. Plasma glucose and protein concentrations and hepatic glycogen concentration were higher (P < 0.05), whereas plasma urea, glucagon, and cortisol (d 2) concentrations as well as hepatic pyruvate carboxylase mRNA level and activity were lower (P < 0.05) in group C than in group F. Orally administered [U-(13)C]-glucose in blood was higher (P < 0.05) but FPU tended to be lower (P < 0.1) in group C than in group F. The improved glucose status in group C resulted from enhanced oral glucose absorption. Metabolic and endocrine changes pointed to elevated amino acid degradation in group F, presumably to provide substrates to meet energy requirements and to compensate for impaired oral glucose uptake.
Resumo:
Invariant natural killer T (iNKT) cells undergo canonical, Vα14-Jα18 rearrangement of the T-cell receptor (TCR) in mice; this form of the TCR recognizes glycolipids presented by CD1d. iNKT cells mediate many different immune reactions. Their constitutive activated and memory phenotype and rapid initiation of effector functions after stimulation indicate previous antigen-specific stimulation. However, little is known about this process. We investigated whether symbiotic microbes can determine the activated phenotype and function of iNKT cells.
Resumo:
The present study describes the occurrence of intestinal parasite infections in livestock guardian dogs and herding dogs. A total of 71 guardian dogs (more than half of the total number of guardian dogs in Switzerland) and 21 herding dogs were coprologically examined, using a combined sedimentation-flotation method. In 21 (23 %) of the dogs intestinal parasites were detected, and 8 (8.7 %) of these dogs shed either sporocysts of Sarcocystis sp. (n = 6) or taeniid eggs (n = 2). The evaluation of questionnaires providing data on age, origin and deworming schemes of the dogs completed the study.
Resumo:
The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies.
Resumo:
Diagnosis of intestinal ischemia remains a clinical challenge. The aim of the present study was to use a metabolomic protocol to identify upregulated and downregulated small molecules (M(r) < 500) in the serum of mice with intestinal ischemia. Such molecules could have clinical utility when evaluated as biomarkers in human studies.
Resumo:
Intestinal bacteria outnumber our own human cells in conditions of both health and disease. It has long been recognized that secretory antibody, particularly IgA, is produced in response to these microbes and hypothesized that this must play an important role in defining the relationship between a host and its intestinal microbes. However, the exact role of IgA and the mechanisms by which IgA can act are only beginning to be understood. In this review we attempt to unravel the complex interaction between so-called "natural," "primitive" (T-cell-independent), and "classical" IgA responses, the nature of the intestinal microbiota/intestinal pathogens and the highly flexible dynamic homeostasis of the mucosal immune system. Such an analysis reveals that low-affinity IgA is sufficient to protect the host from excess mucosal immune activation induced by harmless commensal microbes. However, affinity-maturation of "classical" IgA is essential to provide protection from more invasive commensal species such as segmented filamentous bacteria and from true pathogens such as Salmonellatyphimurium. Thus a correlation is revealed between "sophistication" of the IgA response and aggressiveness of the challenge. A second emerging theme is that more-invasive species take advantage of host inflammatory mechanisms to more successfully compete with the resident microbiota. In many cases, the function of IgA may be to limit such inflammatory responses, either directly by coagulating or inhibiting virulence of bacteria before they can interact with the host or by modulating immune signaling induced by host recognition. Therefore IgA appears to provide an added layer of robustness in the intestinal ecosystem, promoting "commensal-like" behavior of its residents.
Resumo:
With the advent of high through-put sequencing (HTS), the emerging science of metagenomics is transforming our understanding of the relationships of microbial communities with their environments. While metagenomics aims to catalogue the genes present in a sample through assessing which genes are actively expressed, metatranscriptomics can provide a mechanistic understanding of community inter-relationships. To achieve these goals, several challenges need to be addressed from sample preparation to sequence processing, statistical analysis and functional annotation. Here we use an inbred non-obese diabetic (NOD) mouse model in which germ-free animals were colonized with a defined mixture of eight commensal bacteria, to explore methods of RNA extraction and to develop a pipeline for the generation and analysis of metatranscriptomic data. Applying the Illumina HTS platform, we sequenced 12 NOD cecal samples prepared using multiple RNA-extraction protocols. The absence of a complete set of reference genomes necessitated a peptide-based search strategy. Up to 16% of sequence reads could be matched to a known bacterial gene. Phylogenetic analysis of the mapped ORFs revealed a distribution consistent with ribosomal RNA, the majority from Bacteroides or Clostridium species. To place these HTS data within a systems context, we mapped the relative abundance of corresponding Escherichia coli homologs onto metabolic and protein-protein interaction networks. These maps identified bacterial processes with components that were well-represented in the datasets. In summary this study highlights the potential of exploiting the economy of HTS platforms for metatranscriptomics.