53 resultados para Object naming
Resumo:
When reengineering legacy systems, it is crucial to assess if the legacy behavior has been preserved or how it changed due to the reengineering effort. Ideally if a legacy system is covered by tests, running the tests on the new version can identify potential differences or discrepancies. However, writing tests for an unknown and large system is difficult due to the lack of internal knowledge. It is especially difficult to bring the system to an appropriate state. Our solution is based on the acknowledgment that one of the few trustable piece of information available when approaching a legacy system is the running system itself. Our approach reifies the execution traces and uses logic programming to express tests on them. Thereby it eliminates the need to programatically bring the system in a particular state, and handles the test-writer a high-level abstraction mechanism to query the trace. The resulting system, called TESTLOG, was used on several real-world case studies to validate our claims.
Resumo:
We developed an object-oriented cross-platform program to perform three-dimensional (3D) analysis of hip joint morphology using two-dimensional (2D) anteroposterior (AP) pelvic radiographs. Landmarks extracted from 2D AP pelvic radiographs and optionally an additional lateral pelvic X-ray were combined with a cone beam projection model to reconstruct 3D hip joints. Since individual pelvic orientation can vary considerably, a method for standardizing pelvic orientation was implemented to determine the absolute tilt/rotation. The evaluation of anatomically morphologic differences was achieved by reconstructing the projected acetabular rim and the measured hip parameters as if obtained in a standardized neutral orientation. The program had been successfully used to interactively objectify acetabular version in hips with femoro-acetabular impingement or developmental dysplasia. Hip(2)Norm is written in object-oriented programming language C++ using cross-platform software Qt (TrollTech, Oslo, Norway) for graphical user interface (GUI) and is transportable to any platform.
Resumo:
In this paper we compare the performance of two image classification paradigms (object- and pixel-based) for creating a land cover map of Asmara, the capital of Eritrea and its surrounding areas using a Landsat ETM+ imagery acquired in January 2000. The image classification methods used were maximum likelihood for the pixel-based approach and Bhattacharyya distance for the object-oriented approach available in, respectively, ArcGIS and SPRING software packages. Advantages and limitations of both approaches are presented and discussed. Classifications outputs were assessed using overall accuracy and Kappa indices. Pixel- and object-based classification methods result in an overall accuracy of 78% and 85%, respectively. The Kappa coefficient for pixel- and object-based approaches was 0.74 and 0.82, respectively. Although pixel-based approach is the most commonly used method, assessment and visual interpretation of the results clearly reveal that the object-oriented approach has advantages for this specific case-study.
Resumo:
Behavioral reflection is crucial to support for example functional upgrades, on-the-fly debugging, or monitoring critical applications. However the use of reflective features can lead to severe problems due to infinite metacall recursion even in simple cases. This is especially a problem when reflecting on core language features since there is a high chance that such features are used to implement the reflective behavior itself. In this paper we analyze the problem of infinite meta-object call recursion and solve it by providing a first class representation of meta-level execution: at any point in the execution of a system it can be determined if we are operating on a meta-level or base level so that we can prevent infinite recursion. We present how meta-level execution can be represented by a meta-context and how reflection becomes context-aware. Our solution makes it possible to freely apply behavioral reflection even on system classes: the meta-context brings stability to behavioral reflection. We validate the concept with a robust implementation and we present benchmarks.
Resumo:
Back-in-time debuggers are extremely useful tools for identifying the causes of bugs, as they allow us to inspect the past states of objects no longer present in the current execution stack. Unfortunately the "omniscient" approaches that try to remember all previous states are impractical because they either consume too much space or they are far too slow. Several approaches rely on heuristics to limit these penalties, but they ultimately end up throwing out too much relevant information. In this paper we propose a practical approach to back-in-time debugging that attempts to keep track of only the relevant past data. In contrast to other approaches, we keep object history information together with the regular objects in the application memory. Although seemingly counter-intuitive, this approach has the effect that past data that is not reachable from current application objects (and hence, no longer relevant) is automatically garbage collected. In this paper we describe the technical details of our approach, and we present benchmarks that demonstrate that memory consumption stays within practical bounds. Furthermore since our approach works at the virtual machine level, the performance penalty is significantly better than with other approaches.
Resumo:
A large body of research analyzes the runtime execution of a system to extract abstract behavioral views. Those approaches primarily analyze control flow by tracing method execution events or they analyze object graphs of heap snapshots. However, they do not capture how objects are passed through the system at runtime. We refer to the exchange of objects as the object flow, and we claim that object flow is necessary to analyze if we are to understand the runtime of an object-oriented application. We propose and detail Object Flow Analysis, a novel dynamic analysis technique that takes this new information into account. To evaluate its usefulness, we present a visual approach that allows a developer to study classes and components in terms of how they exchange objects at runtime. We illustrate our approach on three case studies.
Resumo:
As object-oriented languages are extended with novel modularization mechanisms, better underlying models are required to implement these high-level features. This paper describes CELL, a language model that builds on delegation-based chains of object fragments. Composition of groups of cells is used: 1) to represent objects, 2) to realize various forms of method lookup, and 3) to keep track of method references. A running prototype of CELL is provided and used to realize the basic kernel of a Smalltalk system. The paper shows, using several examples, how higher-level features such as traits can be supported by the lower-level model.
Resumo:
The rapid growth of object-oriented development over the past twenty years has given rise to many object-oriented systems that are large, complex and hard to maintain. Object-Oriented Reengineering Patterns addresses the problem of understanding and reengineering such object-oriented legacy systems. This book collects and distills successful techniques in planning a reengineering project, reverse-engineering, problem detection, migration strategies and software redesign. The material in this book is presented as a set of "reengineering patterns" --- recurring solutions that experts apply while reengineering and maintaining object-oriented systems. The principles and techniques described in this book have been observed and validated in a number of industrial projects, and reflect best practice in object-oriented reengineering.