45 resultados para OSTEOBLASTS
Resumo:
The use of various combinations of enamel matrix derivative (EMD) and grafting materials has been shown to promote periodontal wound healing/regeneration. However, the downstream cellular behavior of periodontal ligament (PDL) cells and osteoblasts has not yet been studied. Furthermore, it is unknown to what extent the bleeding during regenerative surgery may influence the adsorption of exogenous proteins to the surface of bone grafting materials and the subsequent cellular behavior. In the present study, the aim is to test EMD adsorption to the surface of natural bone mineral (NBM) particles in the presence of blood and determine the effect of EMD coating to NBM particles on downstream cellular pathways, such as adhesion, proliferation, and differentiation of primary human osteoblasts and PDL cells.
Resumo:
Inflammatory cytokines such as tumor necrosis factor-alpha (TNFα) are potent stimulators of osteoclast formation and bone resorption and are frequently associated with pathologic bone metabolism. The cytokine exerts specific effects on its target cells and constitutes a part of the cellular microenvironment. Previously, TNFα was demonstrated to inhibit the development of osteoclasts in vitro via an osteoblast-mediated pathway. In the present study, the molecular mechanisms of the inhibition of osteoclastogenesis were investigated in co-cultures of osteoblasts and bone marrow cells (BMC) and in cultures of macrophage-colony stimulating factor (M-CSF) dependent, non-adherent osteoclast progenitor cells (OPC) grown with M-CSF and receptor activator of NF-κB ligand (RANKL). Granulocyte-macrophage colony stimulating factor (GM-CSF), a known inhibitor of osteoclastogenesis was found to be induced in osteoblasts treated with TNFα and the secreted protein accumulated in the supernatant. Dexamethasone (Dex), an anti-inflammatory steroid, caused a decrease in GM-CSF expression, leading to partial recovery of osteoclast formation. Flow cytometry analysis revealed that in cultures of OPC, supplemented with 10% conditioned medium (CM) from osteoblasts treated with TNFα/1,25(OH)(2)D(3), expression of RANK and CD11c was suppressed. The decrease in RANK expression may be explained by the finding, that GM-CSF and the CM from wt osteoblasts were found to suppress the expression of c-Fos, Fra-1, and Nfatc-1. The failure of OPC to develop into CD11c(+) dendritic cells suggests that cell development is not deviated to an alternative differentiation pathway, but rather, that the monocytes are maintained in an undifferentiated, F4/80(+), state. The data further implies possible interactions among inflammatory cytokines. GM-CSF induced by TNFα acts on early hematopoietic precursors, inhibiting osteoclastogenesis while acting as the growth factor for M-CSF independent inflammatory macrophages. These in turn may condition a microenvironment enhancing osteoclast differentiation and bone resorption upon migration of the OPC from circulation to the bone/bone marrow compartment.
Resumo:
Bioresorbable collagen membranes are routinely utilized in guided bone regeneration to selectively direct the growth and repopulation of bone cells in areas of insufficient volume. However, the exact nature by which alveolar osteoblasts react to barrier membranes as well as the effects following the addition of growth factors to the membranes are still poorly understood. The objective of the present study was therefore to investigate the effect of a bioresorbable collagen membrane soak-loaded in growth factors bone morphogenetic protein 2 (BMP2) or transforming growth factor β1 (TGFβ1) on osteoblast adhesion, proliferation, and differentiation.
Resumo:
Bone morphogenetic proteins (BMP) have to be applied at high concentrations to stimulate bone healing. The limited therapeutic efficacy may be due to the local presence of BMP antagonists such as Noggin. Thus, inhibiting BMP antagonists is an attractive therapeutic option. We hypothesized that the engineered BMP2 variant L51P stimulates osteoinduction by antagonizing Noggin-mediated inhibition of BMP2. Primary murine osteoblasts (OB) were treated with L51P, BMP2, and Noggin. OB proliferation and differentiation were quantified with XTT and alkaline phosphatase (ALP) assays. BMP receptor dependent intracellular signaling in OB was evaluated with Smad and p38 MAPK phosphorylation assays. BMP2, Noggin, BMP receptor Ia/Ib/II, osteocalcin, and ALP mRNA expressions were analyzed with real-time PCR. L51P stimulated OB differentiation by blocking Noggin mediated inhibition of BMP2. L51P did not induce OB differentiation directly and did not activate BMP receptor dependent intracellular signaling via the Smad pathway. Treatment of OB cultures with BMP2 but not with L51P resulted in an increased expression of ALP, BMP2, and Noggin mRNA. By inhibiting the BMP antagonist Noggin, L51P enhances BMP2 activity and stimulates osteoinduction without exhibiting direct osteoinductive function. Indirect osteoinduction with L51P seems to be advantageous to osteoinduction with BMP2 as BMP2 stimulates the expression of Noggin thereby self-limiting its own osteoinductive activity. Treatment with L51P is the first protein-based approach available to augment BMP2 induced bone regeneration through inhibition of BMP antagonists. The described strategy may help to decrease the amounts of exogenous BMPs currently required to stimulate bone healing.
Resumo:
Osteoporosis is characterised by a progressive loss of bone mass and microarchitecture which leads to increased fracture risk. Some of the drugs available to date have shown reductions in vertebral and non-vertebral fracture risk. However, in the ageing population of industrialised countries, still more fractures happen today than are avoided, which highlights the large medical need for new treatment options, models, and strategies. Recent insights into bone biology, have led to a better understanding of bone cell functions and crosstalk between osteoblasts, osteoclasts, and osteocytes at the molecular level. In the future, the armamentarium against osteoporotic fractures will likely be enriched by (1.) new bone anabolic substances such as antibodies directed against the endogenous inhibitors of bone formation sclerostin and dickkopf-1, PTH and PTHrp analogues, and possibly calcilytics; (2.) new inhibitors of bone resorption such as cathepsin K inhibitors which may suppress osteoclast function without impairing osteoclast viability and thus maintain bone formation by preserving the osteoclast-osteoblast crosstalk, and denosumab, an already widely available antibody against RANKL which inhibits osteoclast formation, function, and survival; and (3.) new therapeutic strategies based on an extended understanding of the pathophysiology of osteoporosis which may include sequential therapies with two or more bone active substances aimed at optimising the management of bone capital acquired during adolescence and maintained during adulthood in terms of both quantity and quality. Finally, one of the future challenges will be to identify those patients and patient populations expected to benefit the most from a given drug therapy or regimen. The WHO fracture risk assessment tool FRAX® and improved access to bone mineral density measurements by DXA will play a key role in this regard.
Resumo:
Mouse molars undergo distal movement, during which new bone is formed at the mesial side of the tooth root whereas the preexisting bone is resorbed at the distal side of the root. However, there is little detailed information available regarding which of the bones that surround the tooth root are involved in physiological tooth movement. In the present study, we therefore aimed to investigate the precise morphological differences of the alveolar bone between the bone formation side of the tooth root, using routine histological procedures including silver impregnation, as well as by immunohistochemical analysis of alkaline phosphatase and tartrate-resistant acid phosphatase activity, and immunohistochemical analysis of the expression of the osteocyte markers dentin matrix protein 1, sclerostin, and fibroblast growth factor 23. Histochemical analysis indicated that bone formation by osteoblasts and bone resorption by osteoclasts occurred at the bone formation side and the bone resorption side, respectively. Osteocyte marker immunoreactivity of osteocytes at the surface of the bone close to the periodontal ligament differed at the bone formation and bone resorption sides. We also showed different specific features of osteocytic lacunar canalicular systems at the bone formation and bone resorption sides by using silver staining. This study suggests that the alveolar bone is different in the osteocyte nature between the bone formation side and the bone resorption side due to physiological distal movement of the mouse molar.
Resumo:
A major challenge in the management of patients with prostate cancer is identifying those individuals at risk of developing metastatic disease, as in most cases the disease will remain indolent. We analyzed pooled serum samples from 4 groups of patients (n = 5 samples/group), collected prospectively and actively monitored for a minimum of 5 yrs. Patients groups were (i) histological diagnosis of benign prostatic hyperplasia with no evidence of cancer 'BPH', (ii) localised cancer with no evidence of progression, 'non-progressing' (iii) localised cancer with evidence of biochemical progression, 'progressing', and (iv) bone metastasis at presentation 'metastatic'. Pooled samples were immuno-depleted of the 14 most highly abundant proteins and analysed using a 4-plex iTRAQ approach. Overall 122 proteins were identified and relatively quantified. Comparisons of progressing versus non-progressing groups identified the significant differential expression of 25 proteins (p<0.001). Comparisons of metastatic versus progressing groups identified the significant differential expression of 23 proteins. Mapping the differentially expressed proteins onto the prostate cancer progression pathway revealed the dysregulated expression of individual proteins, pairs of proteins and 'panels' of proteins to be associated with particular stages of disease development and progression. The median immunostaining intensity of eukaryotic translation elongation factor 1 alpha 1 (eEF1A1), one of the candidates identified, was significantly higher in osteoblasts in close proximity to metastatic tumour cells compared with osteoblasts in control bone (p = 0.0353, Mann Whitney U). Our proteomic approach has identified leads for potentially useful serum biomarkers associated with the metastatic progression of prostate cancer. The panels identified, including eEF1A1 warrant further investigation and validation.
Resumo:
OBJECTIVE: To determine via histologic examination and scintigraphy the effect of focused extracorporeal shock wave therapy (ESWT) on normal bone and the bone-ligament interface in horses. ANIMALS: 6 horses without lameness. PROCEDURE: Origins of the suspensory ligament at the metacarpus (35-mm probe depth) and fourth metatarsal bone (5-mm probe depth) were treated twice (days 0 and 16) with 2,000 shocks (energy flux density, 0.15 mJ/mm2). One forelimb and 1 hind limb were randomly treated, and the contralateral limbs served as nontreated controls. Bone scans were performed on days -1 (before ESWT), 3, 16, and 19. Histomorphologic studies of control and treated tissues were performed on day 30. RESULTS: ESWT significantly increased the number of osteoblasts but caused no damage to associated soft tissue structures and did not induce cortical microfractures. A significant correlation between osteoblast numbers and radiopharmaceutical uptake was noticed on lateral views of the hind limb on days 3 and 16 and on caudal views of the forelimb on day 3. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that ESWT has the potential to increase osteoblast numbers in horses. The correlation between increased osteoblast numbers and radio-pharmaceutical uptake 3 days and 16 days after the first ESWT suggested that stimulation of osteogenesis occurred soon after ESWT. No damage to bone or the bone-ligament interface should occur at the settings used in this study, and ESWT can therefore be administered safely in horses.
Resumo:
Monoterpenes, present in aromatic plants, are known to inhibit bone resorption in vivo. In this in vitro study, they inhibited the activation of osteoclasts only at high concentrations but inhibited the formation at much lower concentrations. Therefore, monoterpenes may act in vivo directly on osteoclastogenesis. INTRODUCTION: Monoterpenes are the major components of essential oils, which are formed in many plants. Typically, they are found in herbs and certain fruits. When fed to rats, they inhibit bone resorption by an unknown mechanism. In this study, their effect on the activity and formation of osteoclasts in vitro was studied. MATERIALS AND METHODS: The effect of monoterpenes on the development of osteoclasts was studied in co-cultures of bone marrow cells and osteoblasts and in cultures of spleen cells grown with colony stimulating factor (CSF)-1 and RANKL. In cultures of primary osteoblasts, alkaline phosphatase activity and levels of mRNA encoding RANKL and osteoprotegerin (OPG) mRNA (RT-PCR), and in osteoblast and spleen cell cultures, lactate dehydrogenase activity, a measure of toxicity, were determined. The activity of isolated rat osteoclasts was determined by counting the osteoclasts with actin rings using histofluorometry. RESULTS: The monoterpenes inhibited the formation of osteoclasts more strongly in co-cultures (> or = 1 microM) than in cultures of spleen cells (> or = 10 microM). They had a minor effect on osteoblasts. Toxic effects were not observed. The inhibition of the formation of osteoclasts was not reversed by the addition of farnesol and geranylgeraniol, excluding an effect of the monoterpenes through the mevalonate pathway. A high concentration of 1 mM was required to inhibit the activation of osteoclasts. This effect, shown for menthol and borneol, was reversible. CONCLUSIONS: The results suggest that the monoterpenes inhibit bone resorption in vivo through a direct effect on the formation of osteoclasts acting mainly on the hemopoietic cells.
Resumo:
TNFalpha is known to stimulate the development and activity of osteoclasts and of bone resorption. The cytokine was found to mediate bone loss in conjunction with inflammatory diseases such as rheumatoid arthritis or chronic aseptic inflammation induced by wear particles from implants and was suggested to be a prerequisite for the loss of bone mass under estrogen deficiency. In the present study, the regulation of osteoclastogenesis by TNFalpha was investigated in co-cultures of osteoblasts and bone marrow or spleen cells and in cultures of bone marrow and spleen cells grown with CSF-1 and RANKL. Low concentrations of TNFalpha (1 ng/ml) caused a >90% decrease in the number of osteoclasts in co-cultures, but did not affect the development of osteoclasts from bone marrow cells. In cultures with p55TNFR(-/-) osteoblasts and wt BMC, the inhibitory effect was abrogated and TNFalpha induced an increase in the number of osteoclasts in a dose-dependent manner. Osteoblasts were found to release the inhibitory factor(s) into the culture supernatant after simultaneous treatment with 1,25(OH)(2)D(3) and TNFalpha, this activity, but not its release, being resistant to treatment with anti-TNFalpha antibodies. Dexamethasone blocked the secretion of the TNFalpha-dependent inhibitor by osteoblasts, while stimulating the development of osteoclasts. The data suggest that the effects of TNFalpha on the differentiation of osteoclast lineage cells and on bone metabolism may be more complex than hitherto assumed and that these effects may play a role in vivo during therapies for inflammatory diseases.
Resumo:
Glucocorticosteroid-induced spinal osteoporosis (GIOP) is the most frequent of all secondary types of osteoporosis. The understanding of the pathophysiology of glucocorticoid (GC) induced bone loss is of crucial importance for appropriate treatment and prevention of debilitating fractures that occur predominantly in the spine. GIOP results from depressed bone formation due to lower activity and higher death rate of osteoblasts on the one hand, and from increase bone resorption due to prolonged lifespan of osteoclasts on the other. In addition, calcium/phosphate metabolism may be disturbed through GC effects on gut, kidney, parathyroid glands and gonads. Therefore, therapeutic agents aim at restoring balanced bone cell activity by directly decreasing apoptosis rate of osteoblasts (e.g., cyclical parathyroid hormone) or by increasing apoptosis rate of osteoclasts (e.g., bisphosphonates). Other therapeutical efforts aim at maintaining/restoring calcium/phosphate homeostasis: improving intestinal calcium absorption (using calcium supplementation, vitamin D and derivates) and avoiding increased urinary calcium loss (using thiazides) prevent or counteract a secondary hyperparthyroidism. Bisphosphonates, particularly the aminobisphosphonates risedronate and alendronate, have been shown to protect patients on GCs from (further) bone loss to reduce vertebral fracture risk. Calcitonin may be of interest in situation where bisphosphonates are contraindicated or not applicable and in cases where acute pain due to vertebral fracture has to be manage. The intermittent administration of 1-34-parathormone may be an appealing treatment alternative, based on its documented anabolic effects on bone resulting from the reduction of osteoblastic apoptosis. Calcium and vitamin D should be a systematic adjunctive measure to any drug treatment for GIOP. Based on currently available evidence, fluoride, androgens, estrogens (opposed or unopposed) cannot be recommended for the prevention and treatment of GIOP. However, substitution of gonadal hormones may be indicated if GC-induced hypogonadism is present and leads to clinical symptoms. Data using the SERM raloxifene to treat or prevent GIOP are lacking, as are data using the promising bone anabolic agent strontium ranelate. Kyphoplasty performed in appropriately selected osteoporotic patients with painful vertebral fractures is a promising addition to current medical treatment.
Resumo:
OBJECTIVE: Mesenchymal stem cells (MSCs) have a broad differentiation potential. We aimed to determine if MSCs are present in fetal membranes and placental tissue and to assess their potential to differentiate into neurogenic and mesodermal lineages. STUDY DESIGN: MSCs isolated from first and third trimester chorion and amnion and first trimester chorionic villi and characterized morphologically and by flourescence-activated cell sorting analysis. Their ability to mature under different culture conditions into various cells of mesodermal and neuroectodermal cell lines was assessed by immuno- and cytochemical staining. RESULTS: Independent of gestational age, cells isolated from fetal membranes and placenta showed typical MSC phenotype (positive for CD166, CD105, CD90, CD73, CD49e, CD44, CD29, CD13, MHC I; negative for CD14, CD34, CD45, MHC II) and were able to differentiate into mesodermal cells expressing cell markers/cytologic staining consistent with mature chondroblasts, osteoblasts, adipocytes, or myocytes and into neuronal cells presenting markers of various stages of maturation. The differentiation pattern was mainly dependent on cell type. CONCLUSION: Mesenchymal cells from chorion, amnion, and villous stroma can be differentiated into neurogenic, chondrogenic, osteogenic, adipogenic, and myogenic lineage. Placental tissue obtained during prenatal chorionic villous sampling or at delivery might be an ideal source for autologous stem cell graft for peripartum neuroregeneration and other clinical issues.
Resumo:
The pathologic process of otosclerosis is characterized by an inflammatory lytic phase followed by an abnormal bone remodeling at very specific sites of predilection. There is a clear genetic predisposition with about half of all cases occurring in families with more than one affected member. Females are affected more frequently than males with an approximate 2:1 ratio. N, H, and F measles proteins as well as measles virus RNA have been demonstrated in osteoblasts, chondroblasts, and macrophages of the inflammatory phase of the disease. These observations merely show an association between measles viruses and otosclerosis. In the present study, we tried to prove that there is a causal relationship: voluntary measles vaccination has been available in Germany since 1974. In the absence of official data, we reconstructed the rate of vaccination coverage between 1974 and 2004 using information from the Robert Koch Institute (RKI, Berlin) and from the literature. From the German Federal Office of Statistics, we received the data of 64,112 patients who had been hospitalized between 1993 and 2004 and in whom otosclerosis (ICD-9: 387; ICD-10: H80) had been confirmed. We calculated the effect of measles vaccination on the incidence of hospital treatments for otosclerosis in the period from 1993 to 2004 in Germany. For this purpose, we divided the female and male otosclerosis patients treated as inpatients each year in the observation period into two age groups: those up to 25 years, who had in most cases been vaccinated (designated below as "vaccinated patients") and those over 25 years who mostly could not have been vaccinated (designated below as "unvaccinated patients"). We calculated the incidence of otosclerosis requiring inpatient treatment for the two age groups in each year in the period of observation. For external validation of the study results, the same analysis was carried out in all patients who received inpatient treatment for otitis media in the same period. Between 1993 and 2004 the incidence of hospital treatments for otosclerosis decreased to a significantly greater extent in the vaccinated patients than in the unvaccinated patients. The decline is much greater in men than in women. A comparable effect cannot be demonstrated in patients with otitis media. The results indicate that measles vaccination in Germany has resulted in a significant reduction in the number of hospital treatments for otosclerosis in the vaccinated age groups. We conclude that there is a causal relationship between measles viruses and the development of otosclerosis.
Resumo:
The use of fresh osteochondral allografts is a popular approach to treat articular cartilage lesions. Immunological reactions of the recipient elicited by the allograft's osseous portion, however, frequently result in their deterioration. So far, little emphasis has been put on describing morphology and biological activity in fresh allografts and paralleling these to the immunological processes triggered in the host. Therefore, in the present study murine neonatal femora, serving as osteochondral grafts, were transplanted as fresh isografts (controls) or allografts (the latter in non- or presensitized mice) and retrieved after 2, 5, 10, and 20 days. It was shown that (1) in isografts active bone cells (osteoblasts, osteoclasts) were present, the bone marrow was repopulated with hematopoietic cells, the diaphysis increased in length, and no specific immunological reaction by the recipient was evoked. (2) Allografts transplanted into nonsensitized hosts initially appeared similar as isografts, but activated T lymphocytes at the transplantation site preceded loss of active bone cells within the graft and development of fibrosis within the marrow cavity. (3) In allografts transplanted into presensitized recipients, severe deterioration of the graft was observed with very few active bone cells, accompanied by an invasion of T lymphocytes and fibrosis in the marrow cavity already in early stages. Similar to vital organ transplantation, the function of cells within osteochondral allografts is severely impaired after being recognized by the immune system. Therefore, emphasis has to be placed on the development of procedures preserving cartilage biology while reducing the antigenicity of the allograft's osseous portion.
Resumo:
OBJECTIVE: 5-Aminolevulinic acid based photodynamic therapy (5-ALA-PDT) has revealed promising results in the treatment of inflammatory joint diseases due to the sensitivity of inflamed synovial tissue. For 5-ALA-PDT to be safe and beneficial for intra-articular applications, resistance of chondrocytes is essential to prevent cartilage damage. As no data yet exist, the aim of the present study was to assess in vitro the response of the chondrocytes to 5-ALA-PDT and to compare with osteoblasts and synovial tissue derived cells. METHODS: Bovine articular chondrocytes, osteoblasts, and synovial cells were subjected to 5-ALA-PDT in cell culture. The PpIX accumulation and the function of the cells were assessed for up to 12 days. RESULTS: Bovine chondrocytes showed lower PpIX fluorescence upon incubation with 5-ALA (0.0-2.0 mM) for 4 hours as compared to osteoblasts and synovial cells suggesting a low PpIX accumulation. After incubation with 0.5 mM 5-ALA and application of light at a dose of 20 J/cm2, chondrocytes were functionally not affected (collagen type II and aggrecan mRNA, glycosaminoglycan synthesis) whereas a decrease in the proportion of viable cells was observed in osteoblasts and synovial cells (2+/-2% and 14+/-8%, respectively; chondrocytes 91+/-13%). Chondrocytes showed a 58% reduction of 5-ALA uptake using [3H]5-ALA as compared to osteoblasts and a lower mitochondrial content as assessed by the activity of the mitochondrial marker enzyme citrate synthase (9.2+/- 3.6 mU/mg protein) than osteoblasts (32.6+/-10.5 mU/mg) and synovial cells (60.0+/-10.8 mU/mg). The reduced uptake of 5-ALA and/or the low mitochondrial content, an adaptation to their in vivo environment and the site of PpIX synthesis, presumably explains the lower PpIX content in chondrocytes and their resistance against 5-ALA-PDT. CONCLUSION: 5-ALA-PDT might represent a treatment strategy in inflammatory joint diseases without endangering the cartilage function. However, further in vitro and in vivo experiments are required to confirm this data in the authentic environment of chondrocytes, the articular cartilage.