23 resultados para ONE-DIMENSIONAL CAVITY
Resumo:
Reports on left-lateralized abnormalities of component P300 of event-related brain potentials (ERP) in schizophrenics typically did not vary task difficulties. We collected 16-channel ERP in 13 chronic, medicated schizophrenics (25±4.9 years) and 13 matched controls in a visual P300 paradigm with targets defined by one or two stimulus dimensions (C1: color; C2: color and tilt); subjects key-pressed to targets. The mean target-ERP map landscapes were assessed numerically by the locations of the positive and negative map-area centroids. The centroids' time-space trajectories were searched for the P300 microstate landscape defined by the positive centroid posterior of the negative centroid. At P300 microstate centre latencies in C1, patients' maps tended to a right shift of the positive centroid (p<0.10); in C2 the anterior centroid was more posterior (p<0.07) and the posterior (positive) centroid more anterior (p<0.03), but without leftright difference. Duration of P300 microstate in C2 was shorter in patients (232 vs 347 ms;p<0.03) and the latency of maximal strength of P300 microstate increased significantly in patients (C1: 459 vs 376 ms; C2: 585 vs 525 ms). In summary only the one-dimensional task C1 supported left-sided abnormalities; the two-dimensional task C2 produced abnormal P300 microstate map landscapes in schizophrenics, but no abnormal lateralization. Thus, information processing involved clearly aberrant neural populations in schizophrenics, different when processing one and two stimulus dimensions. The lack of lateralization in the two-dimensional task supported the view that left-temporal abnormality in schizophrenics is only one of several task-dependent aberrations.
Resumo:
The accurate electron density distribution and magnetic properties of two metal-organic polymeric magnets, the quasi-one-dimensional (1D) Cu(pyz)(NO3)2 and the quasi-two-dimensional (2D) [Cu(pyz)2(NO3)]NO3·H2O, have been investigated by high-resolution single-crystal X-ray diffraction and density functional theory calculations on the whole periodic systems and on selected fragments. Topological analyses, based on quantum theory of atoms in molecules, enabled the characterization of possible magnetic exchange pathways and the establishment of relationships between the electron (charge and spin) densities and the exchange-coupling constants. In both compounds, the experimentally observed antiferromagnetic coupling can be quantitatively explained by the Cu-Cu superexchange pathway mediated by the pyrazine bridging ligands, via a σ-type interaction. From topological analyses of experimental charge-density data, we show for the first time that the pyrazine tilt angle does not play a role in determining the strength of the magnetic interaction. Taken in combination with molecular orbital analysis and spin density calculations, we find a synergistic relationship between spin delocalization and spin polarization mechanisms and that both determine the bulk magnetic behavior of these Cu(II)-pyz coordination polymers.
Resumo:
It has been suggested that there are several distinct phenotypes of childhood asthma or childhood wheezing. Here, we review the research relating to these phenotypes, with a focus on the methods used to define and validate them. Childhood wheezing disorders manifest themselves in a range of observable (phenotypic) features such as lung function, bronchial responsiveness, atopy and a highly variable time course (prognosis). The underlying causes are not sufficiently understood to define disease entities based on aetiology. Nevertheless, there is a need for a classification that would (i) facilitate research into aetiology and pathophysiology, (ii) allow targeted treatment and preventive measures and (iii) improve the prediction of long-term outcome. Classical attempts to define phenotypes have been one-dimensional, relying on few or single features such as triggers (exclusive viral wheeze vs. multiple trigger wheeze) or time course (early transient wheeze, persistent and late onset wheeze). These definitions are simple but essentially subjective. Recently, a multi-dimensional approach has been adopted. This approach is based on a wide range of features and relies on multivariate methods such as cluster or latent class analysis. Phenotypes identified in this manner are more complex but arguably more objective. Although phenotypes have an undisputed standing in current research on childhood asthma and wheezing, there is confusion about the meaning of the term 'phenotype' causing much circular debate. If phenotypes are meant to represent 'real' underlying disease entities rather than superficial features, there is a need for validation and harmonization of definitions. The multi-dimensional approach allows validation by replication across different populations and may contribute to a more reliable classification of childhood wheezing disorders and to improved precision of research relying on phenotype recognition, particularly in genetics. Ultimately, the underlying pathophysiology and aetiology will need to be understood to properly characterize the diseases causing recurrent wheeze in children.
Resumo:
Different synthetic routes have been used for the preparation of a new tetranuclear [Fe4O2(O2CCMe3)(8)(bpm)] cluster (1) and a one-dimensional coordination polymer [Fe4O2-(O2CCMe3)(8)(hmta)](n) (2) (bpm = 2,2'-bipyrimidine and hmta = hexamethylenetetramine). For cluster 1, two structural isomers, 1a and 1b center dot 3MeCN, have been found. X-ray crystallographic analysis showed that all complexes consist of a central {Fe-4(mu(3)-O)(2)}(8+) core. In 1a, metal ions in the core are additionally linked by six bridging pivalates as two other pivalates and a bpm ligand are chelated to Fe-III ions, whereas in cluster 1b, metal ions in the {Fe-4(mu(3)-O)(2)}(8+) core are linked by seven bridging pivalates and only one carboxylate as well as bpm are chelated to the iron centers. In coordination polymer 2, [Fe4O2(O2CCMe3)(8)] clusters are bridged by hmta ligands to form zigzag chains. Magnetic measurements have been carried out to characterize these complexes and revealed antiferromagnetic interactions between Fe-III ions with best-fit parameters of J(wb) = -72.2 (1a) and -88.7 cm(-1) (1b) for wing...body interactions.
Resumo:
A new deep ice core drilling program, TALDICE, has been successfully handled by a European team at Talos Dome, in the Ross Sea sector of East Antarctica, down to 1620 m depth. Using stratigraphic markers and a new inverse method, we produce the first official chronology of the ice core, called TALDICE-1. We show that it notably improves an a priori chronology resulting from a one-dimensional ice flow model. It is in agreement with a posteriori controls of the resulting accumulation rate and thinning function along the core. An absolute uncertainty of only 300 yr is obtained over the course of the last deglaciation. This uncertainty remains lower than 600 yr over Marine Isotope Stage 3, back to 50 kyr BP. The phasing of the TALDICE ice core climate record with respect to the central East Antarctic plateau and Greenland records can thus be determined with a precision allowing for a discussion of the mechanisms at work at sub-millennial time scales.
Resumo:
The aim of this study is to develop a new simple method for analyzing one-dimensional transcranial magnetic stimulation (TMS) mapping studies in humans. Motor evoked potentials (MEP) were recorded from the abductor pollicis brevis (APB) muscle during stimulation at nine different positions on the scalp along a line passing through the APB hot spot and the vertex. Non-linear curve fitting according to the Levenberg-Marquardt algorithm was performed on the averaged amplitude values obtained at all points to find the best-fitting symmetrical and asymmetrical peak functions. Several peak functions could be fitted to the experimental data. Across all subjects, a symmetric, bell-shaped curve, the complementary error function (erfc) gave the best results. This function is characterized by three parameters giving its amplitude, position, and width. None of the mathematical functions tested with less or more than three parameters fitted better. The amplitude and position parameters of the erfc were highly correlated with the amplitude at the hot spot and with the location of the center of gravity of the TMS curve. In conclusion, non-linear curve fitting is an accurate method for the mathematical characterization of one-dimensional TMS curves. This is the first method that provides information on amplitude, position and width simultaneously.
Resumo:
Arabidopsis thaliana has emerged as a leading model species in plant genetics and functional genomics including research on the genetic causes of heterosis. We applied a triple testcross (TTC) design and a novel biometrical approach to identify and characterize quantitative trait loci (QTL) for heterosis of five biomass-related traits by (i) estimating the number, genomic positions, and genetic effects of heterotic QTL, (ii) characterizing their mode of gene action, and (iii) testing for presence of epistatic effects by a genomewide scan and marker x marker interactions. In total, 234 recombinant inbred lines (RILs) of Arabidopsis hybrid C24 x Col-0 were crossed to both parental lines and their F1 and analyzed with 110 single-nucleotide polymorphism (SNP) markers. QTL analyses were conducted using linear transformations Z1, Z2, and Z3 calculated from the adjusted entry means of TTC progenies. With Z1, we detected 12 QTL displaying augmented additive effects. With Z2, we mapped six QTL for augmented dominance effects. A one-dimensional genome scan with Z3 revealed two genomic regions with significantly negative dominance x additive epistatic effects. Two-way analyses of variance between marker pairs revealed nine digenic epistatic interactions: six reflecting dominance x dominance effects with variable sign and three reflecting additive x additive effects with positive sign. We conclude that heterosis for biomass-related traits in Arabidopsis has a polygenic basis with overdominance and/or epistasis being presumably the main types of gene action.
Resumo:
This paper presents a novel variable decomposition approach for pose recovery of the distal locking holes using single calibrated fluoroscopic image. The problem is formulated as a model-based optimal fitting process, where the control variables are decomposed into two sets: (a) the angle between the nail axis and its projection on the imaging plane, and (b) the translation and rotation of the geometrical model of the distal locking hole around the nail axis. By using an iterative algorithm to find the optimal values of the latter set of variables for any given value of the former variable, we reduce the multiple-dimensional model-based optimal fitting problem to a one-dimensional search along a finite interval. We report the results of our in vitro experiments, which demonstrate that the accuracy of our approach is adequate for successful distal locking of intramedullary nails.