71 resultados para Nso Murine Myeloma Cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neolymphangiogenesis has recently been demonstrated in transplanted kidneys as well as in chronic interstitial nephritis and IgA nephropathy. However, its significance in kidney disease remains to be defined and a systematic study of renal lymphangiogenesis is warranted. We investigated patients with multiple myeloma (MM) presenting in the great majority with acute renal insufficiency. Controls were allograft kidney donors and patients with renal insufficiency due to acute renal failure (ARF). Lymph vessel length density (LVD) was quantified immunohistochemically by means of antipodoplanin staining followed by computer-assisted stereology. The mean LVD in kidneys of patients with MM (23.19 mm(-2)) was higher when compared with allograft donors (7.42 mm(-2), P = 0.0003) and patients with ARF (6.78 mm(-2), P = 0.0002). The higher LVD was significantly associated with interstitial inflammation, and the newly formed lymph vessels were accompanied by diffuse and nodular interstitial infiltrates composed mainly of CD20(+) B cells and CD27(+) plasma cells. The infiltrates in patients with MM also displayed a higher expression of the B-cell chemoattractant CXCL13. These results demonstrate for the first time that lymphangiogenesis is a prominent feature in MM kidneys and that it is associated with a significant accumulation of macrophages, CD20(+) and CD27(+) B lymphocytes. Further studies should clarify whether these changes represent a beneficial or detrimental factor in the progression of the myeloma-related kidney damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Members of the ATP-binding cassette (ABC) transporters play a pivotal role in cellular lipid efflux. To identify candidate cholesterol transporters implicated in lipid homeostasis and mammary gland (MG) physiology, we compared expression and localization of ABCA1, ABCG1, and ABCA7 and their regulatory genes in mammary tissues of different species during the pregnancy-lactation cycle. Murine and bovine mammary glands (MGs) were investigated during different functional stages. The abundance of mRNAs was determined by quantitative RT-PCR. Furthermore, transporter proteins were localized in murine, bovine, and human MGs by immunohistochemistry. In the murine MG, ABCA1 mRNA abundance was elevated during nonlactating compared with lactating stages, whereas ABCA7 and ABCA1 mRNA profiles were not altered. In the bovine MG, ABCA1, ABCG1, and ABCA7 mRNAs abundances were increased during nonlactating stages compared with lactation. Furthermore, associations between mRNA levels of transporters and their regulatory genes LXRalpha, PPARgamma, and SREBPs were found. ABCA1, ABCG1, and ABCA7 proteins were localized in glandular MG epithelial cells (MEC) during lactation, whereas during nonlactating stages, depending on species, the proteins showed distinct localization patterns in MEC and adipocytes. Our results demonstrate that ABCA1, ABCG1, and ABCA7 are differentially expressed between lactation and nonlactating stages and in association with regulatory genes. Combined expression and localization data suggest that the selected cholesterol transporters are universal MG transporters involved in transport and storage of cholesterol and in lipid homeostasis of MEC. Because of the species-specific expression patterns of transporters in mammary tissue, mechanisms of cholesterol homeostasis seem to be differentially regulated between species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quercetin is a potential chemopreventive and chemotherapeutic agent for pancreatic and other cancers. This study examined the distribution of quercetin in plasma, lung, liver, pancreas, and pancreatic cancer xenografts in a murine in vivo model and the uptake of quercetin in pancreatic cancer MiaPaCa-2 cells in a cellular in vitro model. Mice were randomly allocated to control or 0.2 and 1% quercetin diet groups utilizing the AIN93G-based diet (n = 12 per group) for 6 weeks. In addition, 6 mice from each group were injected weekly with the chemotherapeutic drug gemcitabine (120 mg/kg mouse, ip). MiaPaCa cells were collected from culture medium after cells were exposed to 30 muM quercetin for 0.5, 1, 2, 4, 8, and 24 h. Levels of quercetin and 3-O'-methylquercetin in mouse tissues and MiaPaCa-2 cells were measured by high-pressure liquid chromatography following enzymatic hydrolysis and then extraction. The study showed that quercetin is accumulated in pancreatic cancer cells and is absorbed in the circulating system, tumors, and tissues of pancreas, liver, and lung in vivo. A higher proportion of total quercetin found in tumors and pancreas is aglycones. Gemcitabine cotreatment with quercetin reduced absorption of quercetin in the mouse circulatory system and liver. Results from the study provide important information on the interpretation of the chemotherapeutic efficacy of quercetin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic myelogenous leukemia (CML) is a malignant myeloproliferative disease of hematopoietic stem cells. The disease progresses after several years from an initial chronic phase to a blast phase. Leukemia-specific T cells are regularly detected in CML patients and may be involved in the immunological control of the disease. Here, we analyzed the role of leukemia-specific CD8(+) T cells in CML disease control and the mechanism that maintains CD8(+) T-cell immunosurveillance in a retroviral-induced murine CML model. To study antigen-specific immune responses, the glycoprotein of the lymphocytic choriomeningitis virus was used as model leukemia antigen. Leukemia-specific CTL activity was detectable in vivo in CML mice and depletion of CD8(+) T cells rapidly led to disease progression. CML-specific CTL were characterized by the expression of the IL-7 receptor -chain. In addition, leukemia cells produced IL-7 that was crucial for the maintenance of leukemia-specific CTL and for disease control. Therefore, CML cells maintain the specific CD8(+) T-cell-mediated immune control by IL-7 secretion. This results in prolonged control of disease and probably contributes to the characteristic chronic phase of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Inappropriate cross talk between mammals and their gut microbiota may trigger intestinal inflammation and drive extra-intestinal immune-mediated diseases. Epithelial cells constitute the interface between gut microbiota and host tissue, and may regulate host responses to commensal enteric bacteria. Gnotobiotic animals represent a powerful approach to study bacterial-host interaction but are not readily accessible to the wide scientific community. We aimed at refining a protocol that in a robust manner would deplete the cultivable intestinal microbiota of conventionally raised mice and that would prove to have significant biologic validity. Methodology/Principal Findings Previously published protocols for depleting mice of their intestinal microbiota by administering broad-spectrum antibiotics in drinking water were difficult to reproduce. We show that twice daily delivery of antibiotics by gavage depleted mice of their cultivable fecal microbiota and reduced the fecal bacterial DNA load by 400 fold while ensuring the animals' health. Mice subjected to the protocol for 17 days displayed enlarged ceca, reduced Peyer's patches and small spleens. Antibiotic treatment significantly reduced the expression of antimicrobial factors to a level similar to that of germ-free mice and altered the expression of 517 genes in total in the colonic epithelium. Genes involved in cell cycle were significantly altered concomitant with reduced epithelial proliferative activity in situ assessed by Ki-67 expression, suggesting that commensal microbiota drives cellular proliferation in colonic epithelium. Conclusion We present a robust protocol for depleting conventionally raised mice of their cultivatable intestinal microbiota with antibiotics by gavage and show that the biological effect of this depletion phenocopies physiological characteristics of germ-free mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we have investigated the role of CD69, an early inducible leukocyte activation receptor, in murine dendritic cell (DC) differentiation, maturation, and migration. Skin DCs and DC subsets present in mouse lymphoid organs express CD69 in response to maturation stimuli. Using a contact sensitization model, we show that skin DCs migrated more efficiently to draining lymph nodes (LNs) in the absence of CD69. This was confirmed by subcutaneous transfer of CD69-/- DCs, which presented an increased migration to peripheral LNs. Two-photon microscopy analysis showed that once DCs reached the LNs, CD69 deficiency did not alter DC interstitial motility in the LNs. Chemotaxis to sphingosine-1-phosphate (S1P) was enhanced in CD69-/- DCs compared with wild-type DCs. Accordingly, we detected a higher expression of S1P receptor type-1 (S1P(1)) by CD69-/- DCs, whereas S1P(3) expression levels were similar in wild-type and CD69-/- DCs. Moreover, in vivo treatment with S1P analogs SEW2871 and FTY720 during skin sensitization reduced skin DC migration to peripheral LNs. These results suggest that CD69 regulates S1P-induced skin DC migration by modulating S1P(1) function. Together, our findings increase our knowledge on DC trafficking patterns in the skin, enabling the development of new directed therapies using DCs for antigen (Ag) delivery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intraperitoneal larval infection (alveolar echinococcosis, AE) with Echinococcus multilocularis in mice impairs host immunity. Metacestode metabolites may modulate immunity putatively via dendritic cells. During murine AE, a relative increase of peritoneal DCs (pe-DCs) in infected mice (AE-pe-DCs; 4% of total peritoneal cells) as compared to control mice (naive pe-DCs; 2%) became apparent in our study. The differentiation of AE-pe-DCs into TGF-beta-expressing cells and the higher level of IL-4 than IFN-gamma/IL-2 mRNA expression in AE-CD4+pe-T cells indicated a Th2 orientation. Analysis of major accessory molecule expression on pe-DCs from AE-infected mice revealed that CD80 and CD86 were down-regulated on AE-pe-DCs, while ICAM-1(CD54) remained practically unchanged. Moreover, AE-pe-DCs had a weaker surface expression of MHC class II (Ia) molecules as compared to naive pe-DCs. The gene expression level of molecules involved in MHC class II (Ia) synthesis and formation of MHC class II (Ia)-peptide complexes were down-regulated. In addition, metacestodes excreted/secreted (E/S) or vesicle-fluid (V/F) antigens were found to alter MHC class II molecule expression on the surface of BMDCs. Finally, conversely to naive pe-DCs, an increasing number of AE-pe-DCs down-regulated Con A-induced proliferation of naive CD4+pe-T cells. These findings altogether suggested that TGF-beta-expressing immature AE-pe-DCs might play a significant role in the generation of a regulatory immune response within the peritoneal cavity of AE-infected mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microglial cells are the resident macrophages of the central nervous system and participate in both innate and adaptive immune responses but can also lead to exacerbation of neurodegenerative pathologies after viral infections. Microglia in the outer layers of the retina and the subretinal space are thought to be involved in retinal diseases where low-grade chronic inflammation and oxidative stress play a role. This study investigated the effect of systemic infection with murine cytomegalovirus on the distribution and dynamics of retinal microglia cells. Systemic infection with murine cytomegalovirus elicited a significant increase in the number of microglia in the subretinal space and an accumulation of iris macrophages, along with morphological signs of activation. Interferon γ (IFN-γ)-deficient mice failed to induce changes in microglia distribution. Bone marrow chimera experiments confirmed that microglial cells in the subretinal space were not recruited from the circulating monocyte pool, but rather represented an accumulation of resident microglial cells from within the retina. Our results demonstrate that a systemic viral infection can lead to IFN-γ-mediated accumulation of microglia into the outer retinal layers and offer proof of concept that systemic viral infections alter the ocular microenvironment and therefore, may influence the course of diseases such as macular degeneration, diabetic retinopathy, or autoimmune uveitis, where low-grade inflammation is implicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytomegalovirus (CMV) reactivation in the retina of immunocompromized patients is a cause of significant morbidity as it can lead to blindness. The adaptive immune response is critical in controlling murine CMV (MCMV) infection in MCMV-susceptible mouse strains. CD8(+) T cells limit systemic viral replication in the acute phase of infection and are essential to contain latent virus. In this study, we provide the first evaluation of the kinetics of anti-viral T-cell responses after subretinal infection with MCMV. The acute response was characterized by a rapid expansion phase, with infiltration of CD8(+) T cells into the infected retina, followed by a contraction phase. MCMV-specific T cells displayed biphasic kinetics with a first peak at day 12 and contraction by day 18 followed by sustained recruitment of these cells into the retina at later time points post-infection. MCMV-specific CD8(+) T cells were also observed in the draining cervical lymph nodes and the spleen. Presentation of viral epitopes and activation of CD8(+) T cells was widespread and could be detected in the spleen and the draining lymph nodes, but not in the retina or iris. Moreover, after intraocular infection, antigen-specific cytotoxic activity was detectable and exhibited kinetics equivalent to those observed after intraperitoneal infection with the same viral dose. These data provide novel insights of how and where immune responses are initiated when viral antigen is present in the subretinal space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calretinin (CR) and calbindin D-28k (CB) are cytosolic EF-hand Ca(2+)-binding proteins and function as Ca(2+) buffers affecting the spatiotemporal aspects of Ca(2+) transients and possibly also as Ca(2+) sensors modulating signaling cascades. In the adult hippocampal circuitry, CR and CB are expressed in specific principal neurons and subsets of interneurons. In addition, CR is transiently expressed within the neurogenic dentate gyrus (DG) niche. CR and CB expression during adult neurogenesis mark critical transition stages, onset of differentiation for CR, and the switch to adult-like connectivity for CB. Absence of either protein during these stages in null-mutant mice may have functional consequences and contribute to some aspects of the identified phenotypes. We report the impact of CR- and CB-deficiency on the proliferation and differentiation of progenitor cells within the subgranular zone (SGZ) neurogenic niche of the DG. Effects were evaluated (1) two and four weeks postnatally, during the transition period of the proliferative matrix to the adult state, and (2) in adult animals (3 months) to trace possible permanent changes in adult neurogenesis. The absence of CB from differentiated DG granule cells has no retrograde effect on the proliferative activity of progenitor cells, nor affects survival or migration/differentiation of newborn neurons in the adult DG including the SGZ. On the contrary, lack of CR from immature early postmitotic granule cells causes an early loss in proliferative capacity of the SGZ that is maintained into adult age, when it has a further impact on the migration/survival of newborn granule cells. The transient CR expression at the onset of adult neurogenesis differentiation may thus have two functions: (1) to serve as a self-maintenance signal for the pool of cells at the same stage of neurogenesis contributing to their survival/differentiation, and (2) it may contribute to retrograde signaling required for maintenance of the progenitor pool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies using cultured cells allow one to dissect complex cellular mechanisms in greater detail than when studying living organisms alone. However, before cultured cells can deliver meaningful results they must accurately represent the in vivo situation. Over the last three to four decades considerable effort has been devoted to the development of culture media which improve in vitro growth and modeling accuracy. In contrast to earlier large-scale, non-specific screening of factors, in recent years the development of such media has relied increasingly on a deeper understanding of the cell's biology and the selection of growth factors to specifically activate known biological processes. These new media now enable equal or better cell isolation and growth, using significantly simpler and less labor-intensive methodologies. Here we describe a simple method to isolate and cultivate epidermal keratinocytes from embryonic or neonatal skin on uncoated plastic using a medium specifically designed to retain epidermal keratinocyte progenitors in an undifferentiated state for improved isolation and proliferation and an alternative medium to support terminal differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atopic dermatitis in humans and dogs is a chronic relapsing allergic skin disease. Dogs show a spontaneous disease similar to the human counterpart and represent a model to improve our understanding of the immunological mechanisms, the pathogenesis of the disease, and new therapy development. The aim of the study was to determine the frequency and phenotype of dendritic cells (DC) in the epidermis and dermis of healthy, canine atopic dermatitis lesional, and non-allergic inflammatory skin to further validate the model and to obtain insights into the contribution of DC to the pathogenesis of skin diseases in dogs. We first characterized canine skin DC using flow-cytometric analysis of isolated skin DC combined with an immunohistochemical approach. A major population of canine skin dendritic cells was identified as CD1c(+)CD11c(+)CD14(-)CD80(+)MHCII(+)MAC387(-) cells, with dermal DC but not Langerhans cells expressing CD11b. In the epidermis of lesional canine atopic dermatitis and non-allergic inflammatory skin, we found significantly more dendritic cells compared with nonlesional and control skin. Only in canine atopic dermatitis skin did we find a subset of dendritic cells positive for IgE, in the epidermis and the dermis. Under all inflammatory conditions, dermal dendritic cells expressed more CD14 and CD206. MAC387(+) putative macrophages were absent in healthy but present in inflamed skin, in particular during non-allergic diseases. This study permits a phenotypic identification and differentiation of canine skin dendritic cells and has identified markers and changes in dendritic cells and macrophage populations related to allergic and non-allergic inflammatory conditions. Our data suggest the participation of dendritic cells in the pathogenesis of canine atopic dermatitis similar to human atopic dermatitis and further validate the only non-murine spontaneous animal model for this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To investigate the effects of interleukin-17A (IL-17A) on osteoclastogenesis in vitro. METHODS Bone marrow cells (BMCs) were isolated from the excised tibia and femora of wild-type C57BL/6J mice, and osteoblasts were obtained by sequential digestion of the calvariae of ddY, C57BL/6J, and granulocyte-macrophage colony-stimulating factor-knockout (GM-CSF(-/-)) mice. Monocultures of BMCs or cocultures of BMCs and osteoblasts were supplemented with or without 1,25-dihydroxyvitamin D(3)(1,25[OH](2)D(3)), recombinant human macrophage colony-stimulating factor (M-CSF), RANKL, and IL-17A. After 5-6 days, the cultures were fixed with 4% paraformaldehyde and subsequently stained for the osteoclast marker enzyme tartrate-resistant acid phosphatase (TRAP). Osteoprotegerin (OPG) and GM-CSF expression were measured by enzyme-linked immunosorbent assay, and transcripts for RANK and RANKL were detected by real-time polymerase chain reaction. RESULTS In both culture systems, IL-17A alone did not affect the development of osteoclasts. However, the addition of IL-17A plus 1,25(OH)(2)D(3) to cocultures inhibited early osteoclast development within the first 3 days of culture and induced release of GM-CSF into the culture supernatants. Furthermore, in cocultures of GM-CSF(-/-) mouse osteoblasts and wild-type mouse BMCs, IL-17A did not affect osteoclast development, corroborating the role of GM-CSF as the mediator of the observed inhibition of osteoclastogenesis by IL-17A. CONCLUSION These findings suggest that IL-17A interferes with the differentiation of osteoclast precursors by inducing the release of GM-CSF from osteoblasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immature dendritic cells (DC) reside in tissues where they initiate immune responses by taking up foreign antigens. Since DC have a limited tissue half-life, the DC pool in tissues has to be replenished constantly. This implies that precursor/immature DC must be able to cross non-activated endothelium using as yet unknown mechanisms. Here we show that immature, but not mature bone marrow-derived murine DC migrate across resting endothelial monolayers in vitro. We find that endothelial intercellular adhesion molecule-2 (ICAM-2) is a major player in transendothelial migration (TEM) of immature DC, accounting for at least 41% of TEM. Surprisingly, the ICAM-2-mediated TEM was independent of beta2-integrins, the known ICAM-2 ligands, since neither blocking of beta2-integrins with antibodies nor the use of CD18-deficient DC affected the ICAM-2-specific TEM. In humans, the C-type lectin DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) was shown to interact with ICAM-2, suggesting a similar role in mice. However, we find that none of the murine DC-SIGN homologues mDC-SIGN, murine DC-SIGN-related molecule-1 (mSIGN-R1) and mSIGN-R3 is expressed on the surface of bone marrow-derived mouse DC. Taken together, this study shows that ICAM-2 strongly supports transmigration of immature DC across resting endothelium by interacting with ligands that are distinct from beta2-integrins and DC-SIGN homologues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Larval infection with Echinococcus multilocularis starts with the intrahepatic postoncospheral development of a metacestode that-at its mature stage-consists of an inner germinal and an outer laminated layer (GL ; LL). In certain cases, an appropriate host immune response may inhibit parasite proliferation. Several lines of evidence obtained in vivo and in vitro indicate the important bio-protective role of the LL. For instance, the LL has been proposed to protect the GL from nitric oxide produced by periparasitic macrophages and dendritic cells, and also to prevent immune recognition by surrounding T cells. On the other hand, the high periparasitic NO production by peritoneal exsudate cells contributes to periparasitic immunosuppression, explaining why iNOS deficienct mice exhibit a significantly lower susceptibility towards experimental infection. The intense periparasitic granulomatous infiltration indicates a strong host-parasite interaction, and the involvement of cellular immunity in control of the metacestode growth kinetics is strongly suggested by experiments carried out in T cell deficient mouse strains. Carbohydrate components of the LL, such as Em2(G11) and Em492, as well as other parasite metabolites yield immunomodulatory effects that allow the parasite to survive in the host. I.e., the IgG response to the Em2(G11)-antigen takes place independently of alpha-beta+CD4+T cells, and in the absence of interactions between CD40 and CD40 ligand. Such parasite molecules also interfere with antigen presentation and cell activation, leading to a mixed Th1/Th2-type response at the later stage of infection. Furthermore, Em492 and other (not yet published) purified parasite metabolites suppress ConA and antigen-stimulated splenocyte proliferation. Infected mouse macrophages (AE-MØ) as antigen presenting cells (APC) exhibited a reduced ability to present a conventional antigen (chicken ovalbumin, C-Ova) to specific responder lymph node T cells when compared to normal MØ. As AE-MØ fully maintain their capacity to appropriately process antigens, a failure in T cell receptor occupancy by antigen-Ia complex or/and altered co-stimulatory signals can be excluded. Studying the status of accessory molecules implicated in T cell stimulation by MØ, it could be shown that B7-1 (CD80) and B7-2 (CD86) remained unchanged, whereas CD40 was down-regulated and CD54 (=ICAM-1) slightly up-regulated. FACS analysis of peritoneal cells revealed a decrease in the percentage of CD4+ and CD8+T cells in AE-infected mice. Taken together the obstructed presenting-activity of AE-MØ appeared to trigger an unresponsiveness of T cells leading to the suppression of their clonal expansion during the chronic phase of AE infection. Interesting information on the parasite survival strategy and potential can be obtained upon in vitro and in vivo treatment. Hence, we provided very innovative results by showing that nitazoxanide, and now also, respectively, new modified compounds may represent a useful alternative to albendazole. In the context of chemotherapeutical repression of parasite growth, we searched also for parasite molecules, whose expression levels correlate with the viability and growth activity of E. multilocularis metacestode. Expression levels of 14-3-3 and II/3-10, relatively quantified by realtime reverse transcription-PCR using a housekeeping gene beta-actin, were studied in permissive nu/nu and in low-permissive wild type BALB/c mice. At 2 months p.i., the transcription level of 14-3-3 was significantly higher in parasites actively proliferating in nu/nu mice compared to parasites moderately growing in wild type mice. Immunoblotting experiments confirmed at the protein level that 14-3-3 was over-expressed in parasites derived from nu/nu mice at 2 months p.i. In vitro-treatment of E. multilocularis with an anti-echinococcal drug nitazoxanide for a period of 8 days resulted in a significant decrease of both 14-3-3 and II/3-10 transcription levels,