48 resultados para Nonpolyposis Colon-cancer
Resumo:
BACKGROUND Metastasis of colorectal cancer (CRC) is directly linked to patient survival. We previously identified the novel gene Metastasis Associated in Colon Cancer 1 (MACC1) in CRC and demonstrated its importance as metastasis inducer and prognostic biomarker. Here, we investigate the geographic expression pattern of MACC1 in colorectal adenocarcinoma and tumor buds in correlation with clinicopathological and molecular features for improvement of survival prognosis. METHODS We performed geographic MACC1 expression analysis in tumor center, invasive front and tumor buds on whole tissue sections of 187 well-characterized CRCs by immunohistochemistry. MACC1 expression in each geographic zone was analyzed with Mismatch repair (MMR)-status, BRAF/KRAS-mutations and CpG-island methylation. RESULTS MACC1 was significantly overexpressed in tumor tissue as compared to normal mucosa (p < 0.001). Within colorectal adenocarcinomas, a significant increase of MACC1 from tumor center to front (p = 0.0012) was detected. MACC1 was highly overexpressed in 55% tumor budding cells. Independent of geographic location, MACC1 predicted advanced pT and pN-stages, high grade tumor budding, venous and lymphatic invasion (p < 0.05). High MACC1 expression at the invasive front was decisive for prediction of metastasis (p = 0.0223) and poor survival (p = 0.0217). The geographic pattern of MACC1 did not correlate with MMR-status, BRAF/KRAS-mutations or CpG-island methylation. CONCLUSION MACC1 is differentially expressed in CRC. At the invasive front, MACC1 expression predicts best aggressive clinicopathological features, tumor budding, metastasis formation and poor survival outcome.
Resumo:
Defining new therapeutic strategies to overcome therapy resistance due to tumor heterogeneity in colon cancer is challenging. One option is to explore the molecular profile of aggressive disseminating tumor cells. The cytoskeleton-associated Death-associated protein kinase (DAPK) is involved in the cross talk between tumor and immune cells at the invasion front of colorectal cancer. Here dedifferentiated tumor cells histologically defined as tumor budding are associated with a high risk of metastasis and poor prognosis. Analyzing samples from 144 colorectal cancer patients we investigated immunhistochemical DAPK expression in different tumor regions such as center, invasion front, and buds. Functional consequences for tumor aggressiveness were studied in a panel of colon tumor cell lines using different migration, wound healing, and invasion assays. DAPK levels were experimentally modified by siRNA transfection and overexpression as well as inhibitor treatments. We found that DAPK expression was reduced towards the invasion front and was nearly absent in tumor buds. Applying the ECIS system with HCT116 and HCT116 stable lentiviral DAPK knock down cells (HCTshDAPK) we identified an important role for DAPK in decreasing the migratory capacity whereas proliferation was not affected. Furthermore, the migration pattern differed with HCTshDAPK cells showing a cluster-like migration of tumor cell groups. DAPK inhibitor treatment revealed that the migration rate was independent of DAPK's catalytic activity. Modulation of DAPK expression level in SW480 and DLD1 colorectal cancer cells significantly influenced wound closure rate. DAPK seems to be a major player that influences the migratory capability of disseminating tumor cells and possibly affects the dynamic interface between pro- and anti-survival factors at the invasion front of colorectal cancer. This interesting and new finding requires further evaluation.
Resumo:
In colorectal cancer, tumor budding at the invasive front (peritumoral budding) is an established prognostic parameter and decreased in mismatch repair-deficient tumors. In contrast, the clinical relevance of tumor budding within the tumor center (intratumoral budding) is not yet known. The aim of the study was to determine the correlation of intratumoral budding with peritumoral budding and mismatch repair status and the prognostic impact of intratumoral budding using 2 independent patient cohorts. Following pancytokeratin staining of whole-tissue sections and multiple-punch tissue microarrays, 2 independent cohorts (group 1: n = 289; group 2: n = 222) with known mismatch repair status were investigated for intratumoral budding and peritumoral budding. In group 1, intratumoral budding was strongly correlated to peritumoral budding (r = 0.64; P < .001) and less frequent in mismatch repair-deficient versus mismatch repair-proficient cases (P = .177). Sensitivity and specificity for lymph node positivity were 72.7% and 72.1%. In mismatch repair-proficient cancers, high-grade intratumoral budding was associated with right-sided location (P = .024), advanced T stage (P = .001) and N stage pN (P < .001), vascular invasion (P = .041), infiltrating tumor margin (P = .003), and shorter survival time (P = .014). In mismatch repair-deficient cancers, high intratumoral budding was linked to higher tumor grade (P = .004), vascular invasion (P = .009), infiltrating tumor margin (P = .005), and more unfavorable survival time (P = .09). These associations were confirmed in group 2. High-grade intratumoral budding was a poor prognostic factor in univariate (P < .001) and multivariable analyses (P = .019) adjusting for T stage, N stage distant metastasis, and adjuvant therapy. These preliminary results on 511 patients show that intratumoral budding is an independent prognostic factor, supporting the future investigation of intratumoral budding in larger series of both preoperative and postoperative rectal and colon cancer specimens.
Resumo:
Glutathione-S-transferase of the Pi class (GSTP1) is frequently overexpressed in a variety of solid tumors and has been identified as a potential therapeutic target for cancer therapy. GSTP1 is a phase II detoxification enzyme and conjugates the tripeptide glutathione to endogenous metabolites and xenobiotics, thereby limiting the efficacy of antitumor chemotherapeutic treatments. In addition, GSTP1 regulates cellular stress responses and apoptosis by sequestering and inactivating c-Jun N-terminal kinase (JNK). Thiazolides are a novel class of antibiotics for the treatment of intestinal pathogens with no apparent side effects on the host cells and tissue. Here we show that thiazolides induce a GSTP1-dependent and glutathione-enhanced cell death in colorectal tumor cell lines. Downregulation of GSTP1 reduced the apoptotic activity of thiazolides, whereas overexpression enhanced it. Thiazolide treatment caused strong Jun kinase activation and Jun kinase-dependent apoptosis. As a critical downstream target of Jun kinase we identified the pro-apoptotic Bcl-2 homolog Bim. Thiazolides induced Bim expression and activation in a JNK-dependent manner. Downregulation of Bim in turn significantly blocked thiazolide-induced apoptosis. Whereas low concentrations of thiazolides failed to induce apoptosis directly, they potently sensitized colon cancer cells to TNF-related apoptosis-inducing ligand- and chemotherapeutic drug-induced cell death. Although GSTP1 overexpression generally limits chemotherapy and thus antitumor treatment, our study identifies GSTP1 as Achilles' heel and thiazolides as novel interesting apoptosis sensitizer for the treatment of colorectal tumors.
Resumo:
Mass spectrometry-based serum metabolic profiling is a promising tool to analyse complex cancer associated metabolic alterations, which may broaden our pathophysiological understanding of the disease and may function as a source of new cancer-associated biomarkers. Highly standardized serum samples of patients suffering from colon cancer (n = 59) and controls (n = 58) were collected at the University Hospital Leipzig. We based our investigations on amino acid screening profiles using electrospray tandem-mass spectrometry. Metabolic profiles were evaluated using the Analyst 1.4.2 software. General, comparative and equivalence statistics were performed by R 2.12.2. 11 out of 26 serum amino acid concentrations were significantly different between colorectal cancer patients and healthy controls. We found a model including CEA, glycine, and tyrosine as best discriminating and superior to CEA alone with an AUROC of 0.878 (95% CI 0.815-0.941). Our serum metabolic profiling in colon cancer revealed multiple significant disease-associated alterations in the amino acid profile with promising diagnostic power. Further large-scale studies are necessary to elucidate the potential of our model also to discriminate between cancer and potential differential diagnoses. In conclusion, serum glycine and tyrosine in combination with CEA are superior to CEA for the discrimination between colorectal cancer patients and controls.
Resumo:
In clinical diagnostics, it is of outmost importance to correctly identify the source of a metastatic tumor, especially if no apparent primary tumor is present. Tissue-based proteomics might allow correct tumor classification. As a result, we performed MALDI imaging to generate proteomic signatures for different tumors. These signatures were used to classify common cancer types. At first, a cohort comprised of tissue samples from six adenocarcinoma entities located at different organ sites (esophagus, breast, colon, liver, stomach, thyroid gland, n = 171) was classified using two algorithms for a training and test set. For the test set, Support Vector Machine and Random Forest yielded overall accuracies of 82.74 and 81.18%, respectively. Then, colon cancer liver metastasis samples (n = 19) were introduced into the classification. The liver metastasis samples could be discriminated with high accuracy from primary tumors of colon cancer and hepatocellular carcinoma. Additionally, colon cancer liver metastasis samples could be successfully classified by using colon cancer primary tumor samples for the training of the classifier. These findings demonstrate that MALDI imaging-derived proteomic classifiers can discriminate between different tumor types at different organ sites and in the same site.
Resumo:
Deregulated activation of the Src tyrosine kinase and heightened Id1 expression are independent mediators of aggressive tumor biology. The present report implicates Src signaling as a critical regulator of Id1 gene expression. Microarray analyses showed that Id family genes were among the most highly down-regulated by incubation of A549 lung carcinoma cells with the small-molecule Src inhibitor AZD0530. Id1 transcript and protein levels were potently reduced in a dose-dependent manner concomitantly with the reduction of activated Src levels. These effects were conserved across a panel of lung, breast, prostate, and colon cancer cell lines and confirmed by the ability of PP2, Src siRNA, and Src-blocking peptides to suppress Id1 expression. PP2, AZD0530, and dominant-negative Src abrogated Id1 promoter activity, which was induced by constitutively active Src. The Src-responsive region of the Id1 promoter was mapped to a region 1,199 to 1,360 bps upstream of the translation start site and contained a Smad-binding element. Src was also required for bone morphogenetic protein-2 (BMP-2)-induced Id1 expression and promoter activity, was moderately activated by BMP-2, and complexed with Smad1/5. Conversely, Src inhibitors blocked Smad1/5 nuclear translocation and binding to the Src-responsive region of the Id1 promoter. Consistent with a role for Src and Id1 in cancer cell invasion, Src inhibitors and Id1 siRNA decreased cancer cell invasion, which was increased by Id1 overexpression. Taken together, these results reveal that Src positively interacts with the BMP-Smad-Id pathway and provide new ways for targeted inhibition of Id1.
Resumo:
Cancer cells acquire drug resistance as a result of selection pressure dictated by unfavorable microenvironments. This survival process is facilitated through efficient control of oxidative stress originating from mitochondria that typically initiates programmed cell death. We show this critical adaptive response in cancer cells to be linked to uncoupling protein-2 (UCP2), a mitochondrial suppressor of reactive oxygen species (ROS). UCP2 is present in drug-resistant lines of various cancer cells and in human colon cancer. Overexpression of UCP2 in HCT116 human colon cancer cells inhibits ROS accumulation and apoptosis after exposure to chemotherapeutic agents. Tumor xenografts of UCP2-overexpressing HCT116 cells retain growth in nude mice receiving chemotherapy. Augmented cancer cell survival is accompanied by altered NH(2)-terminal phosphorylation of the pivotal tumor suppressor p53 and induction of the glycolytic phenotype (Warburg effect). These findings link UCP2 with molecular mechanisms of chemoresistance. Targeting UCP2 may be considered a novel treatment strategy for cancer.
Resumo:
OBJECTIVE: Excess body weight, defined by body mass index (BMI), may increase the risk of colorectal cancer. As a prerequisite to the determination of lifestyle attributable risks, we undertook a systematic review and meta-analysis of prospective observational studies to quantify colorectal cancer risk associated with increased BMI and explore for differences by gender, sub-site and study characteristics. METHOD: We searched MEDLINE and EMBASE (to December 2007), and other sources, selecting reports based on strict inclusion criteria. Random-effects meta-analyses and meta-regressions of study-specific incremental estimates were performed to determine the risk ratio (RR) and 95% confidence intervals (CIs) associated with a 5 kg/m(2) increase in BMI. RESULTS: We analysed 29 datasets from 28 articles, including 67,361 incident cases. Higher BMI was associated with colon (RR 1.24, 95% CIs: 1.20-1.28) and rectal (1.09, 1.05-1.14) cancers in men, and with colon cancer (1.09, 1.04-1.12) in women. Associations were stronger in men than in women for colon (P < 0.001) and rectal (P = 0.005) cancers. Associations were generally consistent across geographic populations. Study characteristics and adjustments accounted for only moderate variations of associations. CONCLUSION: Increasing BMI is associated with a modest increased risk of developing colon and rectal cancers, but this modest risk may translate to large attributable proportions in high-prevalence obese populations. Inter-gender differences point to potentially important mechanistic differences, which merit further research.
Resumo:
INTRODUCTION In patients with metastatic colorectal cancers, multimodal management and the use of biological agents such as monoclonal antibodies have had major positive effects on survival. The ability to predict which patients may be at 'high risk' of distant metastasis could have major implications on patient management. Histomorphological, immunohistochemical or molecular biomarkers are currently being investigated in order to test their potential value as predictors of metastasis. AREAS COVERED Here, the author reviews the clinical and functional data supporting the investigation of three novel promising biomarkers for the prediction of metastasis in patients with colorectal cancer: tumor budding, Raf1 kinase inhibitor protein (RKIP) and metastasis-associated in colon cancer-1 (MACC1). EXPERT OPINION The lifespan of most potential biomarkers is short as evidenced by the rare cases that have successfully made their way into daily practice such as KRAS or microsatellite instability (MSI) status. Although the three biomarkers reviewed herein have the potential to become important predictive biomarkers of metastasis, they have similar hurdles to overcome before they can be implemented into clinical management: standardization and validation in prospective patient cohorts.
Resumo:
INTRODUCTION There is a need to assess risk of second primary cancers in prostate cancer (PCa) patients, especially since PCa treatment may be associated with increased risk of second primary tumours. METHODS We calculated standardized incidence ratios (SIRs) for second primary tumours comparing men diagnosed with PCa between 1980 and 2010 in the Canton of Zurich, Switzerland (n = 20,559), and the general male population in the Canton. RESULTS A total of 1,718 men developed a second primary tumour after PCa diagnosis, with lung and colon cancer being the most common (15 and 13% respectively). The SIR for overall second primary cancer was 1.11 (95%CI: 1.06-1.17). Site-specific SIRs varied from 1.19 (1.05-1.34) to 2.89 (2.62-4.77) for lung and thyroid cancer, respectively. When stratified by treatment, the highest SIR was observed for thyroid cancer (3.57 (1.30-7.76)) when undergoing surgery, whereas liver cancer was common when treated with radiotherapy (3.21 (1.54-5.90)) and kidney bladder was most prevalent for those on hormonal treatment (3.15 (1.93-4.87)). Stratification by time since PCa diagnosis showed a lower risk of cancer for men with PCa compared to the general population for the first four years, but then a steep increase in risk was observed. CONCLUSION In the Canton of Zurich, there was an increased risk of second primary cancers among men with PCa compared to the general population. Increased diagnostic activity after PCa diagnosis may partly explain increased risks within the first years of diagnosis, but time-stratified analyses indicated that increased risks remained and even increased over time.
Resumo:
PURPOSE The molecular chaperone heat shock protein 90 (HSP90) plays an important role in several types of tumors also participating in the modulation of the activity of receptor tyrosine kinases activity such as members of the Her family. We evaluated the significance of HSP90 and Her2 expression in colon cancer. METHODS HSP90 and Her2 expression was determined by immunohistochemistry and by fluorescence in situ hybridization (FISH) on 355 primary resected colon carcinomas. Results were correlated with pathologic features (Union for International Cancer Control (UICC) pTNM category, tumor localisation, tumor differentiation), additional molecular genetic characteristics (BRAF, KRAS mutational status, mismatch repair genes (MMR)), and survival. RESULTS HSP90 immunoreactivity was observed in various degrees. Fifty-one cases (14 %) were positive for Her2 (score 2+ and 3+) with 16/43 cases with Her2 2+ staining pattern showing amplification of Her2 determined by FISH. There was a significant correlation between high HSP90 expression and Her2 overexpression (p = 0.011). High HSP90 expression was associated with earlier tumor stages (p = 0.019), absence of lymph node (p = 0.006), and absence of distant metastases (p = 0.001). Patients with high tumoral HSP90 levels had a better survival (p = 0.032), but this was not independent from other prognostic relevant pathologic parameters. Her2 expression was not associated with any of the investigated histopathological, molecular, or clinical parameters. CONCLUSIONS High HSP90 levels are reflecting lower malignant potential in colon cancer. Her2 positivity can be observed in a small number of cases. Targeting HSP90 and/or Her2 may be an alternative therapeutic approach in colon cancer in a subset of patients.
Resumo:
Tumor budding refers to single or small cluster of tumor cells detached from the main tumor mass. In colon cancer high tumor budding is associated with positive lymph nodes and worse prognosis. Therefore, we investigated the value of tumor budding as a predictive feature of lymph node status in breast cancer (BC). Whole tissue sections from 148 surgical resection specimens (SRS) and 99 matched preoperative core biopsies (CB) with invasive BC of no special type were analyzed on one slide stained with pan-cytokeratin. In SRS, the total number of intratumoral (ITB) and peripheral tumor buds (PTB) in ten high-power fields (HPF) were counted. A bud was defined as a single tumor cell or a cluster of up to five tumor cells. High tumor budding equated to scores averaging >4 tumor buds across 10HPFs. In CB high tumor budding was defined as ≥10 buds/HPF. The results were correlated with pathological parameters. In SRS high PTB stratified BC with lymph node metastases (p ≤ 0.03) and lymphatic invasion (p ≤ 0.015). In CB high tumor budding was significantly (p = 0.0063) associated with venous invasion. Pathologists are able, based on morphology, to categorize BC into a high and low risk groups based in part on lymph node status. This risk assessment can be easily performed during routine diagnostics and it is time and cost effective. These results suggest that high PTB is associated with loco-regional metastasis, highlighting the possibility that this tumor feature may help in therapeutic decision-making.
Resumo:
The human epithelial cell adhesion molecule (EpCAM) is highly expressed in a variety of clinical tumour entities. Although an antibody against EpCAM has successfully been used as an adjuvant therapy in colon cancer, this therapy has never gained wide-spread use. We have therefore investigated the possibilities and limitations for EpCAM as possible molecular imaging target using a panel of preclinical cancer models. Twelve human cancer cell lines representing six tumour entities were tested for their EpCAM expression by qPCR, flow cytometry analysis and immunocytochemistry. In addition, EpCAM expression was analyzed in vivo in xenograft models for tumours derived from these cells. Except for melanoma, all cell lines expressed EpCAM mRNA and protein when grown in vitro. Although they exhibited different mRNA levels, all cell lines showed similar EpCAM protein levels upon detection with monoclonal antibodies. When grown in vivo, the EpCAM expression was unaffected compared to in vitro except for the pancreatic carcinoma cell line 5072 which lost its EpCAM expression in vivo. Intravenously applied radio-labelled anti EpCAM MOC31 antibody was enriched in HT29 primary tumour xenografts indicating that EpCAM binding sites are accessible in vivo. However, bound antibody could only be immunohistochemically detected in the vicinity of perfused blood vessels. Investigation of the fine structure of the HT29 tumour blood vessels showed that they were immature and prone for higher fluid flux into the interstitial space. Consistent with this hypothesis, a higher interstitial fluid pressure of about 12 mbar was measured in the HT29 primary tumour via "wick-in-needle" technique which could explain the limited diffusion of the antibody into the tumour observed by immunohistochemistry.
Resumo:
A 71-year-old man exhibited an acute acneiform rash affecting the face and the upper trunk about 2 weeks after starting cetuximab, an epidermal growth factor (EGF) receptor antagonist treatment for metastatic colon cancer. The skin eruption faded after stopping cetuximab and applying topical corticosteroids. The reexposure to cetuximab 3 weeks later provoked a more extended relapse of the skin rash, which then clinically and histologically corresponded to transient acantholytic dermatosis . While the acneiform cutaneous side effects of the EGF receptor antagonists are interpreted as a result of the direct interference with pilosebaceous follicle homeostasis, in this case an acrosyringium-related pathogenesis might be postulated. Applying topical corticosteroids and emollients, the cetuximab therapy could be pursued.