16 resultados para Non-informative prior
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- Aston University Research Archive (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (190)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- Biodiversity Heritage Library, United States (25)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (14)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (29)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (2)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (9)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Glasgow Theses Service (2)
- Hospitais da Universidade de Coimbra (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Politécnico do Porto, Portugal (40)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (14)
- National Center for Biotechnology Information - NCBI (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (25)
- Repositório da Escola Nacional de Administração Pública (ENAP) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (19)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (5)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (27)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (54)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (114)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (10)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (2)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (21)
- Universidade dos Açores - Portugal (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (11)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (59)
- Université de Montréal (1)
- Université de Montréal, Canada (9)
- University of Michigan (2)
- University of Queensland eSpace - Australia (200)
- University of Washington (2)
Resumo:
Blind Deconvolution consists in the estimation of a sharp image and a blur kernel from an observed blurry image. Because the blur model admits several solutions it is necessary to devise an image prior that favors the true blur kernel and sharp image. Many successful image priors enforce the sparsity of the sharp image gradients. Ideally the L0 “norm” is the best choice for promoting sparsity, but because it is computationally intractable, some methods have used a logarithmic approximation. In this work we also study a logarithmic image prior. We show empirically how well the prior suits the blind deconvolution problem. Our analysis confirms experimentally the hypothesis that a prior should not necessarily model natural image statistics to correctly estimate the blur kernel. Furthermore, we show that a simple Maximum a Posteriori formulation is enough to achieve state of the art results. To minimize such formulation we devise two iterative minimization algorithms that cope with the non-convexity of the logarithmic prior: one obtained via the primal-dual approach and one via majorization-minimization.