25 resultados para Nomography (Mathematics)
Children's performance estimation in mathematics and science tests over a school year: A pilot study
Resumo:
The metacognitve ability to accurately estimate ones performance in a test, is assumed to be of central importance for initializing task-oriented effort. In addition activating adequate problem-solving strategies, and engaging in efficient error detection and correction. Although school children's' ability to estimate their own performance has been widely investigated, this was mostly done under highly-controlled, experimental set-ups including only one single test occasion. Method: The aim of this study was to investigate this metacognitive ability in the context of real achievement tests in mathematics. Developed and applied by a teacher of a 5th grade class over the course of a school year these tests allowed the exploration of the variability of performance estimation accuracy as a function of test difficulty. Results: Mean performance estimations were generally close to actual performance with somewhat less variability compared to test performance. When grouping the children into three achievement levels, results revealed higher accuracy of performance estimations in the high achievers compared to the low and average achievers. In order to explore the generalization of these findings, analyses were also conducted for the same children's tests in their science classes revealing a very similar pattern of results compared to the domain of mathematics. Discussion and Conclusion: By and large, the present study, in a natural environment, confirmed previous laboratory findings but also offered additional insights into the generalisation and the test dependency of students' performances estimations.
Resumo:
Bilingual education programs implicitly assume that the acquired knowledge is represented in a language-independent way. This assumption, however, stands in strong contrast to research findings showing that information may be represented in a way closely tied to the specific language of instruction and learning. The present study aims to examine whether and to which extent cognitive costs appear during arithmetic learning when language of instruction and language of retrieving differ. Thirty-nine high school students participating in a bilingual education program underwent a four-day training on multiplication and subtraction problems in one language (German or French), followed by a test session in which they had to solve trained as well as untrained problems in both languages. We found that cognitive costs related to language switching appeared for both arithmetic operations. Implications of our findings are discussed with respect to bilingual education as well as to cognitive mechanisms underlying different arithmetic operations.
Resumo:
We discuss several ontological properties of explicit mathematics and operational set theory: global choice, decidable classes, totality and extensionality of operations, function spaces, class and set formation via formulas that contain the definedness predicate and applications.
Resumo:
We partially solve a long-standing problem in the proof theory of explicit mathematics or the proof theory in general. Namely, we give a lower bound of Feferman’s system T0 of explicit mathematics (but only when formulated on classical logic) with a concrete interpretat ion of the subsystem Σ12-AC+ (BI) of second order arithmetic inside T0. Whereas a lower bound proof in the sense of proof-theoretic reducibility or of ordinalanalysis was already given in 80s, the lower bound in the sense of interpretability we give here is new. We apply the new interpretation method developed by the author and Zumbrunnen (2015), which can be seen as the third kind of model construction method for classical theories, after Cohen’s forcing and Krivine’s classical realizability. It gives us an interpretation between classical theories, by composing interpretations between intuitionistic theories.
Resumo:
Schoolbooks convey not only school-relevant knowledge; they also influence the development of stereotypes about different social groups. Particularly during the 1970s and 1980s, many studies analysed schoolbooks and criticised the overall predominance of male persons and of traditional role allocations. Since that time, women’s and men’s occupations and social functions have changed considerably. The present research investigated gender portrayals in schoolbooks for German and mathematics that were recently published in Germany. We examined the proportions of female and male persons in pictures and texts and categorized their activities, occupational and parental roles. Going beyond previous studies, we added two criteria: the use of gender-fair language and the spatial arrangements of persons in pictures. Our results show that schoolbooks for German contained almost balanced depictions of girls and boys, whereas women were less frequently shown than men. In mathematics books, males outnumbered females in general. Across both types of books, female and male persons were engaged in many different activities, not only gendertyped ones; however, male persons were more often described via their profession than females. Use of gender-fair language has found its way into schoolbooks but is not used consistently. Books for German were more gender fair in terms of linguistic forms than books for mathematics. For spatial arrangements, we found no indication for gender biases. The results are discussed with a focus on how schoolbooks can be optimized to contribute to gender equality.