30 resultados para Nile filapia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the basis of a multi-proxy approach and a strategy combining lacustrine and marine records along a north–south transect, data collected in the central Mediterranean within the framework of a collaborative project have led to reconstruction of high-resolution and well-dated palaeohydrological records and to assessment of their spatial and temporal coherency. Contrasting patterns of palaeohydrological changes have been evidenced in the central Mediterranean: south (north) of around 40° N of latitude, the middle part of the Holocene was characterised by lake-level maxima (minima), during an interval dated to ca. 10 300–4500 cal BP to the south and 9000–4500 cal BP to the north. Available data suggest that these contrasting palaeohydrological patterns operated throughout the Holocene, both on millennial and centennial scales. Regarding precipitation seasonality, maximum humidity in the central Mediterranean during the middle part of the Holocene was characterised by humid winters and dry summers north of ca. 40° N, and humid winters and summers south of ca. 40° N. This may explain an apparent conflict between palaeoclimatic records depending on the proxies used for reconstruction as well as the synchronous expansion of tree species taxa with contrasting climatic requirements. In addition, south of ca. 40° N, the first millennium of the Holocene was characterised by very dry climatic conditions not only in the eastern, but also in the central- and the western Mediterranean zones as reflected by low lake levels and delayed reforestation. These results suggest that, in addition to the influence of the Nile discharge reinforced by the African monsoon, the deposition of Sapropel 1 has been favoured (1) by an increase in winter precipitation in the northern Mediterranean borderlands, and (2) by an increase in winter and summer precipitation in the southern Mediterranean area. The climate reversal following the Holocene climate optimum appears to have been punctuated by two major climate changes around 7500 and 4500 cal BP. In the central Mediterranean, the Holocene palaeohydrological changes developed in response to a combination of orbital, ice-sheet and solar forcing factors. The maximum humidity interval in the south-central Mediterranean started ca. 10 300 cal BP, in correlation with the decline (1) of the possible blocking effects of the North Atlantic anticyclone linked to maximum insolation, and/or (2) of the influence of the remnant ice sheets and fresh water forcing in the North Atlantic Ocean. In the north-central Mediterranean, the lake-level minimum interval began only around 9000 cal BP when the Fennoscandian ice sheet disappeared and a prevailing positive NAO-(North Atlantic Oscillation) type circulation developed in the North Atlantic area. The major palaeohydrological oscillation around 4500–4000 cal BP may be a non-linear response to the gradual decrease in insolation, with additional key seasonal and interhemispheric changes. On a centennial scale, the successive climatic events which punctuated the entire Holocene in the central Mediterranean coincided with cooling events associated with deglacial outbursts in the North Atlantic area and decreases in solar activity during the interval 11 700–7000 cal BP, and to a possible combination of NAO-type circulation and solar forcing since ca. 7000 cal BP onwards. Thus, regarding the centennial-scale climatic oscillations, the Mediterranean Basin appears to have been strongly linked to the North Atlantic area and affected by solar activity over the entire Holocene. In addition to model experiments, a better understanding of forcing factors and past atmospheric circulation patterns behind the Holocene palaeohydrological changes in the Mediterranean area will require further investigation to establish additional high-resolution and well-dated records in selected locations around the Mediterranean Basin and in adjacent regions. Special attention should be paid to greater precision in the reconstruction, on millennial and centennial timescales, of changes in the latitudinal location of the limit between the northern and southern palaeohydrological Mediterranean sectors, depending on (1) the intensity and/or characteristics of climatic periods/oscillations (e.g. Holocene thermal maximum versus Neoglacial, as well as, for instance, the 8.2 ka event versus the 4 ka event or the Little Ice Age); and (2) on varying geographical conditions from the western to the eastern Mediterranean areas (longitudinal gradients). Finally, on the basis of projects using strategically located study sites, there is a need to explore possible influences of other general atmospheric circulation patterns than NAO, such as the East Atlantic–West Russian or North Sea–Caspian patterns, in explaining the apparent complexity of palaeoclimatic (palaeohydrological) Holocene records from the Mediterranean area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review deals with the complex sex determining system of Nile tilapia, Oreochromis niloticus, governed by the interactions between a genetic determination and the influence of temperature, shown in both domestic and wild populations. Naturally sex reversed individuals are strongly suggested in two wild populations. This can be due to the masculinising temperatures which some fry encounter during their sex differentiation period when they colonise shallow waters, and/or to the influence of minor genetic factors. Differences regarding a) thermal responsiveness of sex ratios between and within Nile tilapia populations, b) maternal and paternal effects on temperature dependent sex ratios and c) nearly identical results in offspring of repeated matings, demonstrate that thermosensitivity is under genetic control. Selection experiments to increase the thermosensitivity revealed high responses in the high and low sensitive lines. The high-line showed ~ 90% males after 2 generations of selection whereas the weakly sensitive line had 54% males. This is the first evidence that a surplus of males in temperature treated groups can be selected as a quantitative trait. Expression profiles of several genes (Cyp19a, Foxl2, Amh, Sox9a,b) from the gonad and brain were analysed to define temperature action on the sex determining/differentiating cascade in tilapia. The coexistence of GSD and TSD is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phylogenetic analyses based on mitochondrial (mt) DNA have indicated that the cichlid species flock of the Lake Victoria region is derived from a single ancestral species found in East African rivers, closely related to the ancestor of the Lake Malawi cichlid species flock. The Lake Victoria flock contains ten times less mtDNA variation than the Lake Malawi radiation, consistent with current estimates of the ages of the lakes. We present results of a phylogenetic investigation using nuclear (amplified fragment length polymorphism) markers and a wider coverage of riverine haplochromines. We demonstrate that the Lake Victoria–Edward flock is derived from the morphologically and ecologically diverse cichlid genus Thoracochromis from the Congo and Nile, rather than from the phenotypically conservative East African Astatotilapia. This implies that the ability to express much of the morphological diversity found in the species flock may by far pre–date the origin of the flock. Our data indicate that the nuclear diversity of the Lake Victoria–Edward species flock is similar to that of the Lake Malawi flock, indicating that the genetic diversity is considerably older than the 15 000 years that have passed since the lake began to refill. Most of this variation is manifested in trans–species polymorphisms, indicating very recent cladogenesis from a genetically very diverse founder stock. Our data do not confirm strict monophyly of either of the species flocks, but raise the possibility that these flocks have arisen from hybrid swarms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we present the analysis of the human remains from tomb K93.12 in the Ancient Egyptian necropolis of Dra’ Abu el-Naga, located opposite the modern city of Luxor in Upper Egypt on the western bank of the Nile. Archaeological findings indicate that the rock tomb was originally built in the early 18th dynasty. Remains of two tomb-temples of the 20th dynasty and the looted burial of the High Priest of Amun Amenhotep have been identified. After the New Kingdom the tomb was reused as a burial place until the 26th dynasty. The skeletal and mummified material of the different tomb areas underwent a detailed anthropological and paleopathological analysis. The human remains were mostly damaged and scattered due to extensive grave robberies. In total, 79 individuals could be partly reconstructed and investigated. The age and sex distribution revealed a male predominance and a high percentage of young children (< 6 years) and adults in the range of 20 to 40 years. The paleopathological analysis showed a high prevalence of stress markers such as cribra orbitalia in the younger individuals, and other pathological conditions such as dental diseases, degenerative diseases and a possible case of ankylosing spondylitis. Additionally, 13 mummies of an intrusive waste pit could be attributed to three different groups belonging to earlier time periods based on their style of mummification and materials used. The study revealed important information on the age and sex distribution and diseases of the individuals buried in tomb K93.12.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Excessive runoff and soil erosion in the upper Blue Nile Basin poses a threat that has attracted the attention of the Ethiopian government because of the serious on-site effects in addition to downstream effects, such as the siltation of water harvesting structures and reservoirs. The objective of the study was to evaluate and recommend effective biophysical soil and water conservation measure(s) in the Debre Mewi watershed, about 30 km south of the Lake Tana. Six conservation measures were evaluated for their effects on runoff, soil loss, and forage yield using runoff plots. There was a significant difference between treatments for both runoff and soil loss. The four-year average annual soil loss in the different plots ranged from 26 to 71 t ha−1, and total runoff ranged from 180 to 302 mm, while annual rainfall varied between 854 mm in 2008 and 1247 mm in 2011. Soil bund combined with elephant grass had the lowest runoff and soil loss as compared to the other treatments, whereas the untreated control plot had the highest for both parameters. As an additional benefit, 2.8 and 0.7 t ha−1 year−1 of dried forage was obtained from elephant and local grasses, respectively. Furthermore, it was found that soil bund combined with Tephrosia increased soil organic matter by 13% compared to the control plot. Soil bund efficiency was significantly enhanced by combining them with biological measures and improved farmers’ perception of soil and water conservation measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lake Victoria is Africa’s single most important source of inland fishery production. After it was initially fished down in the first half of the 20th century, Lake Victoria became home to a series of introduced food fishes, culminating in the eventual demographic dominance of the Nile perch, Lates niloticus. Simultaneously with the changes in fish stocks, Lake Victoria experienced dramatic changes in its ecology. The lake fishery during most of the 20th century was a multispecies fishery resting on a diverse lake ecosystem, in which native food fishes were targeted. The lake ended the century with a much more productive fishery, but one in which three species — two of them introduced — made up the majority of the catch. Although many fish stocks in Lake Victoria had declined before the expansion of the Nile perch population, a dramatic increase in the population size of Nile perch in the 1980s roughly coincided with the drastic decline or disappearance of many indigenous species. Now, two decades after the rise of Nile perch in Lake Victoria, this species has shown signs of being overfished, and some of the native species that were in retreat — or even thought extinct — are now reemerging. Data on the resurgence of the indigenous species suggest that heavy fishing of Nile perch may enhance biodiversity; this has spawned renewed interest in management options that promote both fishery sustainability and biodiversity conservation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Lake Nabugabo, Uganda, a small satellite of the equatorial Lake Victoria, approximately 50% of the indigenous fish species disappeared from the open waters subsequent to establishment of the introduced predatory Nile perch (Lates niloticus). However, several of these species persisted in wetland refugia. Over the past decade, Nile perch in Lake Nabugabo have been intensively fished. Herein we report a resurgence of some indigenous species in open waters. In a multiyear study, we used annual transects in inshore and offshore waters of exposed (no wetland) and wetland habitats to document the pattern of resurgence. In 1995, haplochromine cichlids were largely confined to inshore areas, particularly wetland ecotones, and were rare in Nile perch stomachs, as were most other indigenous species. By 2000 haplochromine cichlids were abundant in inshore and offshore areas of both exposed and wetland transects. Several indigenous noncichlids also reappeared in the main lake, including three of the four original mormyrid species. Between 1995 and 1999, there was a dramatic increase in the proportion of haplochromines in the diet of Nile perch. When haplochromines were rare (1995), Nile perch switched from an invertebrate-dominated diet to piscivory at a large size (30 cm total length). In 2000, however, Nile perch were strongly piscivorous by 5–10 cm total length. The pattern of faunal loss and recovery in Lake Nabugabo demonstrates the importance of refugia in providing the seeds of resurgence and provides a model with which to understand some changes in Lake Victoria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the years 1984–1987 Lake Victoria in East Africa experienced what is probably the largest mass extinction of contemporary vertebrates. Within a decade about 200 endemic species of haplochromine cichlids disappeared. The extinctions that occurred in the 1980s have been documented predominantly on species of offshore and sub-littoral waters in the Mwanza Gulf of southern Lake Victoria. Although the littoral fauna of southern Lake Victoria had not been examined in detail, their diversity seemed less affected by the changes in the ecosystem. We give results of the first comprehensive inventory of the littoral cichlid fauna in southern Lake Victoria and discuss its conservation status. We also report on new developments in the sub-littoral fauna after 1990. More than 50 littoral and 15 sub-littoral stations were sampled between the years 1991 to 1995. Of the littoral stations, 34 were sampled for the first time. One hundred sixty three species of haplochromines were collected. Of these, 102 species were previously unknown. About two thirds of them live in rocky areas that were sampled for the first time. Littoral rocky habitats harbored the highest diversity. Since 1990, however, 13 more species disappeared from established sampling stations in littoral habitats. Fishing practices, spreading of exotic fishes, water hyacinth, and eutrophication are considered important threats to the littoral fauna. Also in the upper sub-littoral the number of species declined further. On deeper sub-littoral mud bottoms individual and species numbers increased again, although they are nowhere close to those found before the Nile perch (Lates niloticus) upsurge. This fauna differs from the well studied pre-Nile perch fauna. At well-established sampling stations, the sub-littoral zone is dominated by previously unknown species, and some known species have performed dramatic habitat shifts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipid resonances from mobile lipids can be observed by (1)H NMR spectroscopy in multiple tissues and have also been associated with malignancy. In order to use lipid resonances as a marker for disease, a reference standard from a healthy tissue has to be established taking the influence of variable factors like the spinning rate into account. The purpose of our study was to investigate the effect of spinning rate variation on the HR-MAS pattern of lipid resonances in non-neoplastic brain biopsies from different regions and visualize polar and non-polar lipids by fluorescence microscopy using Nile Red staining. (1)H HR-MAS NMR spectroscopy demonstrated higher lipid peak intensities in normal sheep brain pure white matter biopsies compared to mixed white and gray matter biopsies and pure gray matter biopsies. High spinning rates increased the visibility particularly of the methyl resonances at 1.3 and the methylene resonance at 0.89ppm in white matter biopsies stronger compared to thalamus and brainstem biopsies, and gray matter biopsies. The absence of lipid droplets and presence of a large number of myelin sheaths observed in white matter by Nile Red fluorescence microscopy suggest that the observed lipid resonances originate from the macromolecular pool of lipid protons of the myelin sheath's plasma membranes. When using lipid contents as a marker for disease, the variable behavior of lipid resonances in different neuroanatomical regions of the brain and at variable spinning rates should be considered. The findings may open up interesting possibilities for investigating lipids in myelin sheaths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evolutionary innovations, traits that give species access to previously unoccupied niches, may promote speciation and adaptive radiation. Here, we show that such innovations can also result in competitive inferiority and extinction. We present evidence that the modified pharyngeal jaws of cichlid fishes and several marine fish lineages, a classic example of evolutionary innovation, are not universally beneficial. A large-scale analysis of dietary evolution across marine fish lineages reveals that the innovation compromises access to energy-rich predator niches. We show that this competitive inferiority shaped the adaptive radiation of cichlids in Lake Tanganyika and played a pivotal and previously unrecognized role in the mass extinction of cichlid fishes in Lake Victoria after Nile perch invasion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate rainfall data are the key input parameter for modelling river discharge and soil loss. Remote areas of Ethiopia often lack adequate precipitation data and where these data are available, there might be substantial temporal or spatial gaps. To counter this challenge, the Climate Forecast System Reanalysis (CFSR) of the National Centers for Environmental Prediction (NCEP) readily provides weather data for any geographic location on earth between 1979 and 2014. This study assesses the applicability of CFSR weather data to three watersheds in the Blue Nile Basin in Ethiopia. To this end, the Soil and Water Assessment Tool (SWAT) was set up to simulate discharge and soil loss, using CFSR and conventional weather data, in three small-scale watersheds ranging from 112 to 477 ha. Calibrated simulation results were compared to observed river discharge and observed soil loss over a period of 32 years. The conventional weather data resulted in very good discharge outputs for all three watersheds, while the CFSR weather data resulted in unsatisfactory discharge outputs for all of the three gauging stations. Soil loss simulation with conventional weather inputs yielded satisfactory outputs for two of three watersheds, while the CFSR weather input resulted in three unsatisfactory results. Overall, the simulations with the conventional data resulted in far better results for discharge and soil loss than simulations with CFSR data. The simulations with CFSR data were unable to adequately represent the specific regional climate for the three watersheds, performing even worse in climatic areas with two rainy seasons. Hence, CFSR data should not be used lightly in remote areas with no conventional weather data where no prior analysis is possible.