30 resultados para Nevada. Fish and Game Commission.
Resumo:
In the present study, telomere length, telomerase activity, the mutation load of immunoglobulin variable heavy chain (IGHV) genes, and established prognostic factors were investigated in 78 patients with chronic lymphocytic leukaemia (CLL) to determine the impact of telomere biology on the pathogenesis of CLL. Telomere length was measured by an automated multi-colour flow-FISH, and an age-independent delta telomere length ( TL) was calculated. CLL with unmutated IGHV genes was associated with shorter telomeres (p = 0.002). Furthermore, we observed a linear correlation between the frequency of IGHV gene mutations and elongation of telomeres (r = 0.509, p < 0.001). With respect to prognosis, a threshold TL of -4.2 kb was the best predictor for progression-free and overall survival. TL was not significantly altered over time or with therapy. The correlation between the mutational load in IGHV genes and the TL in CLL might reflect the initial telomere length of the putative cell of origin (pre- versus post-germinal center B cells). In conclusion, the TL is a reliable prognostic marker for patients with CLL. Short telomeres and high telomerase activity as occurs in some patients with CLL with a worse prognosis might be an ideal target for treatment with telomerase inhibitors.
Resumo:
Hatchery fish stocking for stock enhancement has been operated at a massive and global scale. However, the use of hatchery fish as a means of stock enhancement is highly controversial, and little is known about its effects on wild stock and consequences for stock enhancement. Here we review the scientific literature on this subject in order to address a fundamental - question is hatchery stocking a help or harm for wild stock and stock enhancement? We summarized 266 peer-reviewed papers that were published in the last 50 years, which describe empirical case studies on ecology and genetics of hatchery stocks and their effects on stock enhancement. Specifically, we asked whether hatchery stock and wild stock differed in fitness and the level of genetic variation, and whether stocking affected population abundance. Seventy studies contained comparisons between hatchery and wild stocks, out of which 23 studies showed significantly negative effects of hatchery rearing on the fitness of stocked fish, and 28 studies showed reduced genetic variation in hatchery populations. None of these studies suggested a positive genetic effect on the fitness of hatchery-reared individuals after release. These results suggest that negative effects of hatchery rearing are not just a concern but undeniably present in many aquaculture species. In a few cases, however, no obvious effect of hatchery rearing was observed, and a positive contribution of hatchery stock to the abundance of fish populations was indicated. These examples suggest that there is a chance to improve hatchery practices and mitigate the negative effects on wild stocks, although scientific data supporting the positive effect on stock enhancement are largely missing at this moment. Technically, microsatellite-based parentage assignments have been proven as a useful tool for the evaluation of reproductive fitness in natural settings, which is a key for stock enhancement by hatchery-based stocking. We discuss implications of these results, as well as their limitations and future directions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In 2000, fishermen reported the appearance of deformed reproductive organs in whitefish (Coregonus spp.) from Lake Thun, Switzerland. Despite intensive investigations, the causes of these abnormalities remain unknown. Using gene expression profiling, we sought to identify candidate genes and physiological processes possibly associated with the observed gonadal deformations, in order to gain insights into potential causes. Using in situ-synthesized oligonucleotide arrays, we compared the expression levels at 21,492 unique transcript probes in liver and head kidney tissue of male whitefish with deformed and normally developed gonads, respectively. The fish had been collected on spawning sites of two genetically distinct whitefish forms of Lake Thun. We contrasted the gene expression profiles of 56 individuals, i.e., 14 individuals of each phenotype and of each population. Gene-by-gene analysis revealed weak expression differences between normal and deformed fish, and only one gene, ictacalcin, was found to be up-regulated in head kidney tissue of deformed fish from both whitefish forms, However, this difference could not be confirmed with quantitative real-time qPCR. Enrichment analysis on the level of physiological processes revealed (i) the involvement of immune response genes in both tissues, particularly those linked to complement activation in the liver, (ii) proteolysis in the liver and (iii) GTPase activity and Ras protein signal transduction in the head kidney. In comparison with current literature, this gene expression pattern signals a chronic autoimmune disease in the testes. Based on the recent observations that gonad deformations are induced through feeding of zooplankton from Lake Thun we hypothesize that a xenobiotic accumulated in whitefish via the plankton triggering autoimmunity as the likely cause of gonad deformations. We propose several experimental strategies to verify or reject this hypothesis.
Resumo:
During the past decade, extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae have become a matter of great concern in human medicine. ESBL-producing strains are found in the community, not just in hospital-associated patients, which raises a question about possible reservoirs. Recent studies describe the occurrence of ESBL-producing Enterobacteriaceae in meat, fish, and raw milk; therefore, the impact of food animals as reservoirs for and disseminators of such strains into the food production chain must be assessed. In this pilot study, fecal samples of 59 pigs and 64 cattle were investigated to determine the occurrence of ESBL-producing Enterobacteriaceae in farm animals at slaughter in Switzerland. Presumptive-positive colonies on Brilliance ESBL agar were subjected to identification and antibiotic susceptibility testing including the disc diffusion method and E-test ESBL strips. As many as 15.2% of the porcine and 17.1% of the bovine samples, predominantly from calves, yielded ESBL producers. Of the 21 isolated strains, 20 were Escherichia coli, and one was Citrobacter youngae. PCR analysis revealed that 18 strains including C. youngae produced CTX-M group 1 ESBLs, and three strains carried genes encoding for CTX-M group 9 enzymes. In addition, eight isolates were PCR positive for TEM beta-lactamase, but no bla(SHV) genes were detected. Pulsed-field gel electrophoresis showed a high genetic diversity within the strains. The relatively high rates of occurrence of ESBLproducing strains in food animals and the high genetic diversity among these strains indicate that there is an established reservoir of these organisms in farm animals. Further studies are necessary to assess future trends.
Resumo:
Unique and shared cytogenetic abnormalities have been documented for marginal zone lymphomas (MZLs) arising at different sites. Recently, homozygous deletions of the chromosomal band 6q23, involving the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) gene, a negative regulator of NF-kappaB, were described in ocular adnexal MZL, suggesting a role for A20 as a tumor suppressor in this disease. Here, we investigated inactivation of A20 by DNA mutations or deletions in a panel of extranodal MZL (EMZL), nodal MZL (NMZL), and splenic MZL (SMZL). Inactivating mutations encoding truncated A20 proteins were identified in 6 (19%) of 32 MZLs, including 2 (18%) of 11 EMZLs, 3 (33%) of 9 NMZLs, and 1 (8%) of 12 SMZLs. Two additional unmutated nonsplenic MZLs also showed monoallelic or biallelic A20 deletions by fluorescent in situ hybridization (FISH) and/or SNP-arrays. Thus, A20 inactivation by either somatic mutation and/or deletion represents a common genetic aberration across all MZL subtypes, which may contribute to lymphomagenesis by inducing constitutive NF-kappaB activation.
Resumo:
Through the concerted evaluations of thousands of commercial substances for the qualities of persistence, bioaccumulation, and toxicity as a result of the United Nations Environment Program's Stockholm Convention, it has become apparent that fewer empirical data are available on bioaccumulation than other endpoints and that bioaccumulation models were not designed to accommodate all chemical classes. Due to the number of chemicals that may require further assessment, in vivo testing is cost prohibitive and discouraged due to the large number of animals needed. Although in vitro systems are less developed and characterized for fish, multiple high-throughput in vitro assays have been used to explore the dietary uptake and elimination of pharmaceuticals and other xenobiotics by mammals. While similar processes determine bioaccumulation in mammalian species, a review of methods to measure chemical bioavailability in fish screening systems, such as chemical biotransformation or metabolism in tissue slices, perfused tissues, fish embryos, primary and immortalized cell lines, and subcellular fractions, suggest quantitative and qualitative differences between fish and mammals exist. Using in vitro data in assessments for whole organisms or populations requires certain considerations and assumptions to scale data from a test tube to a fish, and across fish species. Also, different models may incorporate the predominant site of metabolism, such as the liver, and significant presystemic metabolism by the gill or gastrointestinal system to help accurately convert in vitro data into representative whole-animal metabolism and subsequent bioaccumulation potential. The development of animal alternative tests for fish bioaccumulation assessment is framed in the context of in vitro data requirements for regulatory assessments in Europe and Canada.
Resumo:
BACKGROUND Cytology is an excellent method with which to diagnose preinvasive lesions of the uterine cervix, but it suffers from limited specificity for clinically significant lesions. Supplementary methods might predict the natural course of the detected lesions. The objective of the current study was to test whether a multicolor fluorescence in situ hybridization (FISH) assay might help to stratify abnormal results of Papanicolaou tests. METHODS A total of 219 liquid-based cytology specimens of low-grade squamous intraepithelial lesions (LSIL), 49 atypical squamous cells of undetermined significance (ASCUS) specimens, 52 high-grade squamous intraepithelial lesion (HSIL) specimens, and 50 normal samples were assessed by FISH with probes for the human papillomavirus (HPV), MYC, and telomerase RNA component (TERC). Subtyping of HPV by polymerase chain reaction (PCR) was performed in a subset of cases (n=206). RESULTS There was a significant correlation found between HPV detection by FISH and PCR (P<.0001). In patients with LSILs, the presence of HPV detected by FISH was significantly associated with disease progression (P<.0001). An increased MYC and/or TERC gene copy number (>2 signals in>10% of cells) prevailed in 43% of ASCUS specimens and was more frequent in HSIL (85%) than in LSIL (33%) (HSIL vs LSIL: P<.0001). Increased TERC gene copy number was significantly correlated with progression of LSIL (P<.01; odds ratio, 7.44; area under the receiver operating characteristic curve, 0.73; positive predictive value, 0.30; negative predictive value, 0.94) CONCLUSIONS: The detection of HPV by FISH analysis is feasible in liquid-based cytology and is significantly correlated with HPV analysis by PCR. The analysis of TERC gene copy number may be useful for risk stratification in patients with LSIL.
Resumo:
Most empirical studies support a decline in speciation rates through time, although evidence for constant speciation rates also exists. Declining rates have been explained by invoking pre-existing niches, whereas constant rates have been attributed to non-adaptive processes such as sexual selection and mutation. Trends in speciation rate and the processes underlying it remain unclear, representing a critical information gap in understanding patterns of global diversity. Here we show that the temporal trend in the speciation rate can also be explained by frequency-dependent selection. We construct a frequency-dependent and DNA sequence-based model of speciation. We compare our model to empirical diversity patterns observed for cichlid fish and Darwin's finches, two classic systems for which speciation rates and richness data exist. Negative frequency-dependent selection predicts well both the declining speciation rate found in cichlid fish and explains their species richness. For groups like the Darwin's finches, in which speciation rates are constant and diversity is lower, speciation rate is better explained by a model without frequency-dependent selection. Our analysis shows that differences in diversity may be driven by incipient species abundance with frequency-dependent selection. Our results demonstrate that genetic-distance-based speciation and frequency-dependent selection are sufficient to explain the high diversity observed in natural systems and, importantly, predict decay through time in speciation rate in the absence of pre-existing niches.
Resumo:
Human–wildlife conflict is emerging as an important topic in conservation. Carnivores and birds of prey are responsible for most conflicts with livestock and game but since the mid 1990s a new conflict is emerging in south-west Europe: the presumed killing of livestock by griffon vultures Gyps fulvus. Lack of scientific data and magnification of the problem by the media are increasing alarm amongst the public, and political pressures to implement management decisions have not been based on scientific evidence. We compiled information on 1,793 complaints about attacks by griffon vultures on livestock, lodged with Spanish authorities from 1996 to 2010. Spain is home to the majority (95%) of griffon vultures and other scavengers in the European Union. Most of the cases occurred in areas of high livestock density, affected principally sheep (49%) and cows (31%), and were associated with spring birthing times (April–June). On average 69% of the complaints made annually were rejected because of a lack of evidence about whether the animal was alive before being eaten. The total economic cost of compensation was EUR 278,590 from 2004 to 2010. We discuss possible ways to mitigate this emerging human–wildlife conflict. These need to include the participation of livestock farmers, authorities, scientists and conservation groups.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are immunotoxicants in fish. In mammals, phase I metabolites are believed to be critically involved in the immunotoxicity of PAHs. This mechanism has been suggested for fish as well. The present study investigates the capacity of immune organs (head kidney, spleen) of rainbow trout, Oncorhynchus mykiss, to metabolize the prototypic PAH, benzo[a]pyrene (BaP). To this end, we analyzed 1) the induction of enzymatic capacity measured as 7-ethoxyresorufin-O-deethylase (EROD) activity in immune organs compared with liver, 2) the organ profiles of BaP metabolites generated in vivo, and 3) rates of microsomal BaP metabolite production in vitro. All measurements were done for control fish and for fish treated with an intraperitoneal injection of 15 mg BaP/kg body weight. In exposed trout, the liver, head kidney, and spleen contained similar levels of BaP, whereas EROD induction differed significantly between the organs, with liver showing the highest induction factor (132.8×), followed by head kidney (38.4×) and spleen (1.4×). Likewise, rates of microsomal metabolite formation experienced the highest induction in the liver of BaP-exposed trout, followed by the head kidney and spleen. Microsomes from control fish displayed tissue-specific differences in metabolite production. In contrast, in BaP-exposed trout, microsomes of all organs produced the potentially immunotoxic BaP-7,8-dihydrodiol as the main metabolite. The findings from this study show that PAHs, like BaP, are distributed into immune organs of fish and provide the first evidence that immune organs possess inducible PAH metabolism leading to in situ production of potentially immunotoxic PAH metabolites.
Resumo:
Few studies examine the long-term effects of changing predator size and abundance on the habitat associations of resident organisms despite that this knowledge is critical to understand the ecosystem effects of fishing. Marine reserves offer the opportunity to determine ecosystem-level effects of manipulated predator densities, while parallel monitoring of adjacent fished areas allows separating these effects from regional-scale change. Relationships between two measures of benthic habitat structure (reef architecture and topographic complexity) and key invertebrate species were followed over 17 years at fished and protected subtidal rocky reefs associated with two southern Australian marine reserves. Two commercially harvested species, the southern rock lobster (Jasus edwardsii) and blacklip abalone (Haliotis rubra) were initially weakly associated with habitat structure across all fished and protected sites. The strength of association with habitat for both species increased markedly at protected sites 2 years after marine reserve declaration, and then gradually weakened over subsequent years. The increasing size of rock lobster within reserves apparently reduced their dependency on reef shelters as refuges from predation. Rising predation by fish and rock lobster in the reserves corresponded with weakening invertebrate–habitat relationships for H. rubra and sea urchins (Heliocidaris erythrogramma). These results emphasise that animal–habitat relationships are not necessarily stable through time and highlight the value of marine reserves as reference sites. Our work shows that fishery closures to enhance populations of commercially important and keystone species should be in areas with a range of habitat features to accommodate shifting ecological requirements with ontogenesis.
Resumo:
Different cytokines are secreted in response to specific microbial molecules referred to as pathogen associated molecular patterns (PAMPs). Interleukin 6 (IL6) and interleukin 10 (IL10), both secreted by macrophages and lymphocytes, play a central role in the immunological response. In this work we obtained the genomic structure and complete DNA sequence of the porcine IL6 and IL10 genes and identified polymorphisms in the genomic sequences of these genes on a panel of ten different pig breeds. Comparative intra- and interbreed sequence analysis revealed a total of eight polymorphisms in the porcine IL6 gene and 21 in the porcine IL10 gene, which include single nucleotide polymorphisms (SNPs) and insertion deletion polymorphisms (indels). Additionally, the chromosomal localization of the IL10 gene was determined by FISH and RH mapping.
Resumo:
We present the first study comparing epitheliocystis in a wild and farmed salmonid in Europe. Sampling three tributaries to the Lake Geneva, including one from headwaters to river mouth, revealed an unequal distribution of epitheliocystis in brown trout (Salmo trutta). When evaluated histologically and comparing sites grouped as wild versus farm, the probability of finding infected trout is higher on farms. In contrast, the infection intensities, as estimated by the number of cysts per gill arch, were higher on average and showed maximum values in the wild trout. Sequence analysis showed the most common epitheliocystis agents were Candidatus Piscichlamydia salmonis, all clustering into a single clade, whereas Candidatus Clavichlamydia salmonicola sequences cluster in two closely related sub-species, of which one was mostly found in farmed fish and the other exclusively in wild brown trout, indicating that farms are unlikely to be the source of infections in wild trout. A detailed morphological analysis of cysts using transmission electron microscopy revealed unique features illustrating the wide divergence existing between Ca. P. salmonis and Ca. C. salmonicola within the phylum Chlamydiae
Resumo:
The need for wildlife health surveillance has become increasingly recognized. However, comprehensive programs which cover a wide spectrum of species, pathogens and geographic areas are still lacking in most European countries and practical examples of systems in place remain scarce. This article provides an overview of the organization of wildlife health surveillance in Switzerland, with a focus on the development, current strategies and the activities of the national program carried out by the Centre for Fish and Wildlife Health (FIWI), University of Bern. This documentation may stimulate on-going discussions on the design and development of national wildlife health surveillance programs in other countries. Investigations into wildlife health in Switzerland date back to the 1950s. The FIWI acts as a national competence center for wildlife diseases on mandate of the Swiss federal authorities. The mandate includes four main activities: disease diagnostics, research, consulting and teaching. In line with this, the FIWI has made continuous efforts to strengthen a national network of field partners and implemented strategies to facilitate long-term and metastudies.