18 resultados para Network dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have performed microfluidic experiments with erythrocytes passing through a network of microchannels of 20–25 μm width and 5 μm of height. Red blood cells (RBCs) were flowing in countercurrent directions through microchannels connected by μm pores. Thereby, we have observed interesting flow dynamics. All pores were blocked by erythrocytes. Some erythrocytes have passed through pores, depending on the channel size and cell elasticity. Many RBCs split into two or more smaller parts. Two types of splits were observed. In one type, the lipid bilayer and spectrin network were cut at the same time. In the second type, the lipid bilayer reconnected, but the part of spectrin network stayed outside the cell forming a rope like structure, which could eventually break. The microporous membrane results in multiple breakups of the cells, which can have various clinical implications, e.g., glomerulus hematuria and anemia of patients undergoing dialysis. The cell breakup procedure is similar to the one observed in the droplet breakage of viscoelastic liquids in confinement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients with schizophrenia show abnormal dynamics and structure of temporally ­coherent networks (TCNs) assessed using fMRI, which undergo adaptive shifts in preparation for a cognitively demanding task. During working memory (WM) tasks, patients with schizophrenia show persistent deficits in TCNs as well as EEG indices of WM. Studying their temporal relationship during WM tasks might provide novel insights into WM performance deficits seen in schizophrenia. Simultaneous EEG-fMRI data were acquired during the performance of a verbal Sternberg WM task with two load levels (load 2 and load 5) in 17 patients with schizophrenia and 17 matched healthy controls. Using covariance mapping, we investigated the relationship of the activity in the TCNs before the memoranda were encoded and EEG spectral power during the retention interval. We assessed four TCNs – default mode network (DMN), dorsal attention network (dAN), left and right working memory networks (WMNs) – and three EEG bands – theta, alpha, and beta. In healthy controls, there was a load-dependent inverse relation between DMN and frontal midline theta power and an anti-correlation between DMN and dAN. Both effects were not significantly detectable in patients. In addition, healthy controls showed a left-lateralized load-dependent recruitment of the WMNs. Activation of the WMNs was bilateral in patients, suggesting more resources were recruited for successful performance on the WM task. Our findings support the notion of schizophrenia patients showing deviations in their neurophysiological responses before the retention of relevant information in a verbal WM task. Thus, treatment strategies as neurofeedback ­targeting prestates could be beneficial as task performance relies on the preparatory state of the brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transient versus sustained ERK MAP kinase (MAPK) activation dynamics induce proliferation versus differentiation in response to epidermal (EGF) or nerve (NGF) growth factors in PC-12 cells. Duration of ERK activation has therefore been proposed to specify cell fate decisions. Using a biosensor to measure ERK activation dynamics in single living cells reveals that sustained EGF/NGF application leads to a heterogeneous mix of transient and sustained ERK activation dynamics in distinct cells of the population, different than the population average. EGF biases toward transient, while NGF biases toward sustained ERK activation responses. In contrast, pulsed growth factor application can repeatedly and homogeneously trigger ERK activity transients across the cell population. These datasets enable mathematical modeling to reveal salient features inherent to the MAPK network. Ultimately, this predicts pulsed growth factor stimulation regimes that can bypass the typical feedback activation to rewire the system toward cell differentiation irrespective of growth factor identity.