63 resultados para Natural Resource Ecology and Management
Resumo:
The southernmost European natural and planted pine forests are among the most vulnerable areas to warming-induced drought decline. Both drought stress and management factors (e.g., stand origin or reduced thinning) may induce decline by reducing the water available to trees but their relative importances have not been properly assessed. The role of stand origin - densely planted vs. naturally regenerated stands - as a decline driver can be assessed by comparing the growth and vigor responses to drought of similar natural vs. planted stands. Here, we compare these responses in natural and planted Black pine (Pinus nigra) stands located in southern Spain. We analyze how environmental factors - climatic (temperature and precipitation anomalies) and site conditions - and biotic factors - stand structure (age, tree size, density) and defoliation by the pine processionary moth - drive radial growth and crown condition at stand and tree levels. We also assess the climatic trends in the study area over the last 60 years. We use dendrochronology, linear mixed-effects models of basal area increment and structural equation models to determine how natural and planted stands respond to drought and current competition intensity. We observed that a temperature rise and a decrease in precipitation during the growing period led to increasing drought stress during the late 20th century. Trees from planted stands experienced stronger growth reductions and displayed more severe crown defoliation after severe droughts than those from natural stands. High stand density negatively drove growth and enhanced crown dieback, particularly in planted stands. Also pine processionary moth defoliation was more severe in the growth of natural than in planted stands but affected tree crown condition similarly in both stand types. In response to drought, sharp growth reduction and widespread defoliation of planted Mediterranean pine stands indicate that they are more vulnerable and less resilient to drought stress than natural stands. To mitigate forest decline of planted stands in xeric areas such as the Mediterranean Basin, less dense and more diverse stands should be created through selective thinning or by selecting species or provenances that are more drought tolerant. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Madagascar is currently developing a policy and strategies to enhance the sustainable management of its natural resources, encouraged by United Nations Framework Convention on Climate Change (UNFCCC) and REDD. To set up a sustainable financing scheme methodologies have to be provided that estimate, prevent and mitigate leakage, develop national and regional baselines, and estimate carbon benefits. With this research study this challenge was tried to be addressed by analysing a lowland rainforest in the Analanjirofo region in the district of Soanierana Ivongo, North East of Madagascar. For two distinguished forest degradation stages: “low degraded forest” and “degraded forest” aboveground biomass and carbon stock was assessed. The corresponding rates of carbon within those two classes were calculated and linked to a multi-temporal set of SPOT satellite data acquired in 1991, 2004 and 2009. Deforestation and particularly degradation and the related carbon stock developments were analysed. With the assessed data for the 3 years 1991, 2004 and 2009 it was possible to model a baseline and to develop a forest prediction for 2020 for Analanjirofo region in the district of Soanierana Ivongo. These results, developed applying robust methods, may provide important spatial information regarding the priorities in planning and implementation of future REDD+ activities in the area.
Resumo:
Land use and land use change affect deadwood amount, quality and associated biodiversity in forest ecosystems. Old growth or virgin forests, which are exceptionally rare in temperate Europe harbor more deadwood and associated fungal species than managed forests. Whether and how more recent abandonment of management, to reestablish more natural forests, affects deadwood amount and fungal diversity on deadwood is unknown. Our main aim was to compare deadwood amount, characteristics and deadwood inhabiting fungi in differently managed forest types typical for large areas of Central Europe. We sampled deadwood inhabiting fungi on 27 forest plots of 400 m2 each in three geographically distant regions in Germany. Three forest management types, namely managed coniferous, managed deciduous and unmanaged deciduous forests, were represented by nine plots each. In autumn 2008 we collected all fungal fruiting bodies on deadwood >7 cm of diameter. We found deadwood amounts and fungal species numbers in unmanaged forests to be lower than in managed forests, which we attributed to the lack of natural tree death during the short time since management abandonment of usually 10–30 years. However, rarefaction analysis among deadwood items in forest plots indicated a slightly higher species density in unmanaged forests, which may be the first signal of a positive effect on fungal species richness on deadwood after management was abandoned. Although the three study regions span a large geographical gradient, we did not detect differences in the fungal species composition or in deadwood amounts and patterns, which reflects the wide distribution of this group of organisms and points to consistent management procedures among study regions. A very clear composition difference however occurred between deciduous and coniferous wood showing species substrate specialization. We conclude that the amount of deadwood is the main driver of deadwood fungal species richness, and substrate diversity in terms of various decay degrees, deadwood tree species and deadwood size are also important. Thus, to promote species richness of deadwood fungi it is vital to enhance deadwood amounts and diversity
Resumo:
There is much interest in the identification of the main drivers controlling changes in the microbial community that may be related to sustainable land use. We examined the influence of soil properties and land-use intensity (N fertilization, mowing, grazing) on total phospholipid fatty acid (PLFA) biomass, microbial community composition (PLFA profiles) and activities of enzymes involved in the C, N, and P cycle. These relationships were examined in the topsoil of grasslands from three German regions (Schorfheide-Chorin (SCH), Hainich-Dun (HAI), Schwabische Alb (ALB)) with different parent material. Differences in soil properties explained 60% of variation in PLFA data and 81% of variation in enzyme activities across regions and land-use intensities. Degraded peat soils in the lowland areas of the SCH with high organic carbon (OC) concentrations and sand content contained lower PLFA biomass, lower concentrations of bacterial, fungal, and arbuscular mycorrhizal PLFAs, but greater enzyme activities, and specific enzyme activities (per unit microbial biomass) than mineral soils in the upland areas of the HAI and ALB, which are finer textured, drier, and have smaller OC concentrations. After extraction of variation that originated from large-scale differences among regions and differences in land-use intensities between plots, soil properties still explained a significant amount of variation in PLFA data (34%) and enzyme activities (60%). Total PLFA biomass and all enzyme activities were mainly related to OC concentration, while relative abundance of fungi and fungal to bacterial ratio were mainly related to soil moisture. Land-use intensity (LUI) significantly decreased the soil C:N ratio. There was no direct effect of LUI on total PLFA biomass, microbial community composition, N and P cycling enzyme activities independent of study region and soil properties. In contrast, the activities and specific activities of enzymes involved in the C cycle increased significantly with LUI independent of study region and soil properties, which can have impact on soil organic matter decomposition and nutrient cycling. Our findings demonstrate that microbial biomass and community composition as well as enzyme activities are more controlled by soil properties than by grassland management at the regional scale. (C) 2013 Elsevier B.V: All rights reserved.
Resumo:
Modern cloud-based applications and infrastructures may include resources and services (components) from multiple cloud providers, are heterogeneous by nature and require adjustment, composition and integration. The specific application requirements can be met with difficulty by the current static predefined cloud integration architectures and models. In this paper, we propose the Intercloud Operations and Management Framework (ICOMF) as part of the more general Intercloud Architecture Framework (ICAF) that provides a basis for building and operating a dynamically manageable multi-provider cloud ecosystem. The proposed ICOMF enables dynamic resource composition and decomposition, with a main focus on translating business models and objectives to cloud services ensembles. Our model is user-centric and focuses on the specific application execution requirements, by leveraging incubating virtualization techniques. From a cloud provider perspective, the ecosystem provides more insight into how to best customize the offerings of virtualized resources.
Resumo:
To understand succession in dipterocarp rain forest after logging, the structure, species composition and dynamics of primary (PF) and secondary (SF) forest at Danum were compared. In 10 replicate 0.16-ha plots per forest type trees >= 10 cm gbh (3.2 cm dbh) were measured in 1995 and 2001. The SF had been logged in 1988, which allowed successional change to be recorded at 8 and 13 years. In 2001, saplings (1.0-3.1 cm dbh) were measured in nested quadrats. The forest types were similar in mean radiation at 2 m height, and in density, basal area and species number of all trees. Among small (10 <= 31.4) and large ( >= 31.4 cm gbh) trees, in both 1995 and 2001, there were 10- and 3-fold more dipterocarps in SF than PF respectively; and averaging over the two dates, there were correspondingly ca. 10- and 18-fold more pioneers. Mortality was ca. 60% higher in SF than PF, largely due to a seven-fold difference for pioneers: for dipterocarps there was little difference. Recruitment was similar in PF and SE Stem growth rates were 37% higher in SF than PF for all trees, although dipterocarps showed the opposite trend. Among saplings, dipterocarps dominated SF with a 10-fold higher density than in PF. For dipterocarps, the light (LH) and medium-heavy (MHH) canopy hardwoods, and the shade-tolerant, smaller-stature other (OTH) species (e.g. Hopea and Vatica) were in the ratios ca. 40:15:45 in SF and 85: < 1:15 in PF. LHs had higher mortality than OTHs in SE In PF ca. 80% of the saplings were LH: in SF ca. 70% were OTH. The predominance of OTHs in SF is explained by the logging of primary rain forest which was in a likely late stage of recovery from natural disturbance, plus the continuing shaded conditions in the understorey promoted by dense pioneer vegetation. At 13 years after logging succession appeared to be inhibited: LHs were being suppressed but MHHs and OTHs persisted. Succession in lowland dipterocarp, rain forests may therefore depend on the successional state of the primary forest when it is logged. A review of logged versus unlogged studies in Borneo highlights the need for more detailed ecological comparisons.
Resumo:
OBJECTIVE Due to an increased focus on erosive tooth wear (ETW), the European Federation of Conservative Dentistry (EFCD) considered ETW as a relevant topic for generating this consensus report. MATERIALS AND METHODS This report is based on a compilation of the scientific literature, an expert conference, and the approval by the General Assembly of EFCD. RESULTS ETW is a chemical-mechanical process resulting in a cumulative loss of hard dental tissue not caused by bacteria, and it is characterized by loss of the natural surface morphology and contour of the teeth. A suitable index for classification of ETW is the basic erosive wear examination (BEWE). Regarding the etiology, patient-related factors include the pre-disposition to erosion, reflux, vomiting, drinking and eating habits, as well as medications and dietary supplements. Nutritional factors relate to the composition of foods and beverages, e.g., with low pH and high buffer capacity (major risk factors), and calcium concentration (major protective factor). Occupational factors are exposition of workers to acidic liquids or vapors. Preventive management of ETW aims at reducing or stopping the progression of the lesions. Restorative management aims at reducing symptoms of pain and dentine hypersensitivity, or to restore esthetic and function, but it should only be used in conjunction with preventive strategies. CONCLUSIONS Effective management of ETW includes screening for early signs of ETW and evaluating all etiological factors. CLINICAL RELEVANCE ETW is a clinical condition, which calls for the increased attention of the dental community and is a challenge for the cooperation with other medical specialities.
Resumo:
The ecosystem services concept (ES) is becoming a cornerstone of contemporary sustainability thought. Challenges with this concept and its applications are well documented, but have not yet been systematically assessed alongside strengths and external factors that influence uptake. Such an assessment could form the basis for improving ES thinking, further embedding it into environmental decisions and management. The Young Ecosystem Services Specialists (YESS) completed a Strengths–Weaknesses–Opportunities–Threats (SWOT) analysis of ES through YESS member surveys. Strengths include the approach being interdisciplinary, and a useful communication tool. Weaknesses include an incomplete scientific basis, frameworks being inconsistently applied, and accounting for nature's intrinsic value. Opportunities include alignment with existing policies and established methodologies, and increasing environmental awareness. Threats include resistance to change, and difficulty with interdisciplinary collaboration. Consideration of SWOT themes suggested five strategic areas for developing and implementing ES. The ES concept could improve decision-making related to natural resource use, and interpretation of the complexities of human-nature interactions. It is contradictory – valued as a simple means of communicating the importance of conservation, whilst also considered an oversimplification characterised by ambiguous language. Nonetheless, given sufficient funding and political will, the ES framework could facilitate interdisciplinary research, ensuring decision-making that supports sustainable development.
Resumo:
Studies have shown a growing trend toward increasing prevalence of dental erosion, associated with the declining prevalence of caries disease in industrialized countries. Erosion is an irreversible chemical process that results in tooth substance loss and leaves teeth susceptible to damage as a result of wear over the course of an individual's lifetime. Therefore, early diagnosis and adequate prevention are essential to minimize the risk of tooth erosion. Clinical appearance is the most important sign to be used to diagnose erosion. The Basic Erosive Wear Examination (BEWE) is a simple method to fulfill this task. The determination of a variety of risk and protective factors (patient-dependent and nutrition-dependent factors) as well as their interplay are necessary to initiate preventive measures tailored to the individual. When tooth loss caused by erosive wear reaches a certain level, oral rehabilitation becomes necessary.
Resumo:
The authors present the case of an 81-year-old patient with severe aortic stenosis who experienced left ventricular embolization of an aortic bioprosthesis during transapical aortic valve implantation. The authors discuss reasons for prosthesis embolization and reinforce the attention to technical details and the widespread use of multimodality imaging techniques. In this context, transesophageal echocardiography appears indispensable in the detection and management of procedure-related complications.