18 resultados para Native forest seed


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mediterranean Basin is the region of Europe most vulnerable to negative climate-change impacts, including forest decline, increased wildfire, and biodiversity loss. Because humans have affected Mediterranean ecosystems for millennia, it is unclear whether the region's native ecosystems were more resilient to climate change than current ecosystems, and whether they would provide sustainable management options if restored. We simulated vegetation with the LandClim model, using present-day climate as well as future climate-change scenarios, in three representative areas that encompass a broad range of Mediterranean conditions and vegetation types. Sedimentary pollen records that document now-extinct forests help to validate the simulations. Forests modeled under present climate closely resemble the extinct forests when human disturbance is limited; under future scenarios, characterized by increased temperatures and decreased precipitation, extinct forests are projected to re-emerge. When combined with modeling, paleoecological evidence reveals the potential of native vegetation to re-establish under current and future climate conditions, and provides a template for novel management strategies to maintain forest productivity and biodiversity in a warmer and drier future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the ectomycorrhizal caesalpiniaceous groves of southern Korup National Park, the dominant tree species, Microberlinia bisulcata, displays very poor in situ recruitment compared with its codominant, Tetraberlinia bifoliolata. The reported ex situ experiment tested whether availabilities of soil potassium and magnesium play a role. Seedlings of the two species received applications of K and Mg fertilizer in potted native soil in a local shade house, and their responses in terms of growth and nutrient concentrations were recorded over 2 years. Amended soil concentrations were also determined. Microberlinia responded strongly and positively in its growth to Mg, but less to K; Tetraberlinia responded weakly to both. Added Mg led to strongly increased Mg concentration for Microberlinia while added K changed that concentration only slightly; Tetraberlinia strongly increased its concentration of K with added K, but only somewhat its Mg concentration with added Mg. Additions of Mg and K had small but important antagonistic effects. Microberlinia is Mg-demanding and apparently Mg-limited in Korup soil; Tetraberlinia, whilst K-demanding, appeared not to be K-limited (for growth). Added K enhanced plant P concentrations of both species. Extra applied Mg may also be alleviating soil aluminum toxicity, and hence improving growth indirectly and especially to the benefit of Microberlinia. Mg appears to be essential for Microberlinia seedling growth and its low soil availability in grove soils at Korup may be an important contributing factor to its poor recruitment. Microberlinia is highly shade-intolerant and strongly light-responding, whilst Tetraberlinia is more shade-tolerant and moderately light-responding, which affords an interesting contrast with respect to their differing responses to Mg supply. The study revealed novel aspects of functional traits and likely niche-partitioning among ectomycorrhizal caesalps in African rain forests. Identifying the direct and interacting indirect effects of essential elements on tropical tree seedling growth presents a considerable challenge due the complex nexus of causes involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Janzen–Connell hypothesis proposes that specialized herbivores maintain high numbers of tree species in tropical forests by restricting adult recruitment so that host populations remain at low densities. We tested this prediction for the large timber tree species, Swietenia macrophylla, whose seeds and seedlings are preyed upon by small mammals and a host-specific moth caterpillar Steniscadia poliophaea, respectively. At a primary forest site, experimental seed additions to gaps – canopy-disturbed areas that enhance seedling growth into saplings – over three years revealed lower survival and seedling recruitment closer to conspecific trees and in higher basal area neighborhoods, as well as reduced subsequent seedling survival and height growth. When we included these Janzen–Connell effects in a spatially explicit individual-based population model, the caterpillar's impact was critical to limiting Swietenia's adult tree density, with a > 10-fold reduction estimated at 300 years. Our research demonstrates the crucial but oft-ignored linkage between Janzen–Connell effects on offspring and population-level consequences for a long-lived, potentially dominant tree species.