32 resultados para NW Iberia Allochthonous Massifs
Resumo:
We present the data of the 3rdresearch expedition of the European Dry Grasslands Group (EDGG), which was conducted in 2011 in two contrasting areas in NW Bulgarian mountains. The aim was to collect plot data for comparing Bulgarian dry grasslands with those of other parts of Europe in terms of syntaxonomy and biodiversity. We sampled 15 nested-plot series (0.0001–100 m²) and 68 normal plots(10 m²) covering the full variety of dry grassland types occurring in the Vratsa area (Balkan Mts.) and the Koprivshtitsa area (Sredna Gora Mt.). In the plots all vascular plants, terricolous non-vascular plants and a set of soil and other environmental parameters were determined. By applying modified TWIN-SPAN, we distinguished 10 floristically well characterised vegetation types at the association level. After comparison with the regional and European literature, we propose to place them within three classes and five orders: Festuco-Brometea with the orders Stipo pulcherrimae-Festucetalia pallentis (xerophilous dry grasslands of base-rich rocks; alliance Saturejion montanae), Brachypodietalia pinnate (meso-xeric, basiphilous grasslands; alliances Cirsio-Brachypodion pinnate and Chyrsopogono grylli-Danthonion calycinae),Calluno-Ulicetea with the order Nardetalia stricae (lowland to montane Nardus swards; alliance Violion caninae), and Koelerio-Corynephoretea with the orders Sedo-Scleranthetalia (open communities of skeleton-rich, acidic soils; alliance unclear) and Trifolioarvensis-Festucetalia ovinae(closed, meso-xeric, acidophilous grasslands; alliance Armerio rumelicae-Potentillion). The Violion caninae with the association Festuco rubrae-Genistelletum sagittalisis reported from Bulgaria for the first time, while the two occurring Koelerio-Corynephoretea communities are described as new associations (Cetrario aculeatae-Plantaginetum radicatae, Plantagini radicatae-Agrostietum capillaris). According to DCA the main floristic gradient was largely determined by soil conditions, differentiating the Festuco-Brometea communities on soils with high pH and high humus content from the Koelerio-Corynephoretea communities on acidic, humus-poor soils, while the Calluno-Ulicetea stands are the connecting link. At 10 m² Festuco-Brometea and Calluno-Ulicetea stands were richer in species across all investigated taxa and in vascular plants than Koelerio-Corynephoretea stands; the latter were richest in lichen species, while bryophyte richness did not differ significantly among syntaxa. Among the Bulgarian classes, the species-area relationships tended to be steepest in the Festuco-Brometea (i.e. highest beta diversity), but both alpha and beta diversity clearly fell behind the Festuco-Brometea communities in the Transylvanian Plateau, Romania, located less than 500 km north of the study region. Overall, our study contributes to a more adequate placement of the Bulgarian dry grasslands in the European syntaxonomic system and provides valuable data for large-scale analyses of biodiversity patterns
Resumo:
The geologic structures and metamorphic zonation of the northwestern Indian Himalaya contrast significantly with those in the central and eastern parts of the range, where the high-grade metamorphic rocks of the High Himalayan Crystalline (HHC) thrust southward over the weakly metamorphosed sediments of the Lesser Himalaya along the Main Central Thrust (MCT). Indeed, the hanging wall of the MCT in the NW Himalaya mainly consists of the greenschist facies metasediments of the Chamba zone, whereas HHC high-grade rocks are exposed more internally in the range as a large-scale dome called the Gianbul dome. This Gianbul dome is bounded by two oppositely directed shear zones, the NE-dipping Zanskar Shear Zone (ZSZ) on the northern flank and the SW-dipping Miyar Shear Zone (MSZ) on the southern limb. Current models for the emplacement of the HHC in NW India as a dome structure differ mainly in terms of the roles played by both the ZSZ and the MSZ during the tectonothermal evolution of the HHC. In both the channel flow model and wedge extrusion model, the ZSZ acts as a backstop normal fault along which the high-grade metamorphic rocks of the HHC of Zanskar are exhumed. In contrast, the recently proposed tectonic wedging model argues that the ZSZ and the MSZ correspond to one single detachment system that operates as a subhorizontal backthrust off of the MCT. Thus, the kinematic evolution of the two shear zones, the ZSZ and the MSZ, and their structural, metamorphic and chronological relations appear to be diagnostic features for discriminating the different models. In this paper, structural, metamorphic and geochronological data demonstrate that the MSZ and the ZSZ experienced two distinct kinematic evolutions. As such, the data presented in this paper rule out the hypothesis that the MSZ and the ZSZ constitute one single detachment system, as postulated by the tectonic wedging model. Structural, metamorphic and geochronological data are used to present an alternative tectonic model for the large-scale doming in the NW Indian Himalaya involving early NE-directed tectonics, weakness in the upper crust, reduced erosion at the orogenic front and rapid exhumation along both the ZSZ and the MSZ.
Resumo:
Aim Our aim was to discriminate different species of Pinus via pollen analysis in order to assess the responses of particular pine species to orbital and millennial-scale climate changes, particularly during the last glacial period. Location Modern pollen grains were collected from current pine populations along transects from the Pyrenees to southern Iberia and the Balearic Islands. Fossil pine pollen was recovered from the south-western Iberian margin core MD95-2042. Methods We measured a set of morphological traits of modern pollen from the Iberian pine species Pinus nigra, P. sylvestris, P. halepensis, P. pinea and P. pinaster and of fossil pine pollen from selected samples of the last glacial period and the early to mid-Holocene. Classification and regression tree (CART) analysis was used to establish a model from the modern dataset that discriminates pollen from the different pine species and allows identification of fossil pine pollen at the species level. Results The CART model was effective in separating pollen of P. nigra and P. sylvestris from that of the Mediterranean pine group (P. halepensis, P. pinea and P. pinaster). The pollen of Pinus nigra diverged from that of P. sylvestris by having a more flattened corpus. Predictions using this model suggested that fossil pine pollen is mainly from P. nigra in all the samples analysed. Pinus sylvestris was more abundant in samples from Greenland stadials than Heinrich stadials, whereas Mediterranean pines increased in samples from Greenland interstadials and during the early to mid-Holocene. Main conclusions Morphological parameters can be successfully used to increase the taxonomic resolution of fossil pine pollen at the species level for the highland pines (P. nigra and P. sylvestris) and at the group of species level for the Mediterranean pines. Our study indicates that P. nigra was the dominant component of the last glacial south-western/central Iberian pinewoods, although the species composition of these woodlands varied in response to abrupt climate changes.
Resumo:
Deuterium (δD) and oxygen (δ18O) isotopes are powerful tracers of the hydrological cycle and have been extensively used for paleoclimate reconstructions as they can provide information on past precipitation, temperature and atmospheric circulation. More recently, the use of δ17O excess derived from precise measurement of δ17O and δ18O gives new and additional insights in tracing the hydrological cycle whereas uncertainties surround this proxy. However, 17O excess could provide additional information on the atmospheric conditions at the moisture source as well as about fractionations associated with transport and site processes. In this paper we trace water stable isotopes (δD,δ17O and δ18O) along their path from precipitation to cave drip water and finally to speleothem fluid inclusions for Milandre cave in northwestern Switzerland. A two year-long daily resolved precipitation isotope record close to the cave site is compared to collected cave drip water (3 months average resolution) and fluid inclusions of modern and Holocene stalagmites. Amount weighted mean δD,δ18O and δ17O are -71.0‰, -9.9‰, -5.2‰ for precipitation, -60.3‰, -8.7‰, -4.6‰ for cave drip water and -61.3‰, -8.3‰, -4.7‰ for recent fluid inclusions respectively. Second order parameters have also been derived in precipitation and drip water and present similar values with 18 per meg for 17O excess whereas d-excess is 1.5‰ more negative in drip water. Furthermore, the atmospheric signal is shifted towards enriched values in the drip water and fluid inclusions (Δ of ~ + 10‰ for δD). The isotopic composition of cave drip water exhibits a weak seasonal signal which is shifted by around 8 - 10 months (groundwater residence time) when compared to the precipitation. Moreover, we carried out the first δ17O measurement in speleothem fluid inclusions, as well as the first comparison of the δ17 O behaviour from the meteoric water to the fluid inclusions entrapment in speleothems. This study on precipitation, drip water and fluid inclusions will be used as a speleothem proxy calibration for Milandre cave in order to reconstruct paleotemperatures and moisture source variations for Western Central Europe.