35 resultados para NK(1) receptors


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The surgical removal of insulinomas is hampered by difficulties to localize it using conventional radiological procedures. Recently these tumors were shown to exhibit a very high density of glucagon-like peptide-1 receptors (GLP-1R) in vitro that may be used as specific targets for in vivo receptor radiolabeling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Endothelin-1 (ET-1) is mainly secreted by endothelial cells and acts as a potent vasoconstrictor. In addition ET-1 has also been shown to have pleiotropic effects on a variety of other systems including adaptive immunity. There are two main ET-1 receptors, ET(A) and ET(B), which have different tissue and functional distributions. Dendritic cells (DC) are pivotal antigen-presenting cells linking the innate with the adaptive immune system. DC are sentinels expressing pattern-recognition receptors, e.g. the toll-like receptors (TLR) for detecting danger signals released from pathogens or tissue injury. Here we show for the first time that stimulation of human monocyte-derived DC with exogenous as well as endogenous selective TLR4 and TLR2 agonists induces the production of ET-1 in a dose- and time-dependent manner. 'Alternative' activation of DC in the presence of 1alpha,25-dihydroxyvitamin D(3) results in a marked potentiation of the endothelin response, whereas prostaglandin E(2) or dexamethasone do not increase ET-1 production. Furthermore, chetomin, an inhibitor of the transcription factor hypoxia-inducible factor 1alpha (HIF-1alpha), prevents TLR-mediated secretion of ET-1. Surprisingly, stimulation of human monocytes with LPS does not lead to secretion of detectable amounts of ET-1. These results suggest a role of ET-1 as an important player in human DC biology and innate immunity in general.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the (125)iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer (125)I-GLP-1(7-36)amide. METHODS Receptor autoradiography studies with (125)I-GLP-1(7-36)amide agonist or (125)I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. RESULTS The antagonist (125)I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer (125)I-GLP-1(7-36)amide. For comparison, (125)I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. CONCLUSION The GLP-1 receptor antagonist exendin(9-39) labelled with (125)I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is still controversial which mediators regulate energy provision to activated neural cells, as insulin does in peripheral tissues. Interleukin-1β (IL-1β) may mediate this effect as it can affect glucoregulation, it is overexpressed in the 'healthy' brain during increased neuronal activity, and it supports high-energy demanding processes such as long-term potentiation, memory and learning. Furthermore, the absence of sustained neuroendocrine and behavioral counterregulation suggests that brain glucose-sensing neurons do not perceive IL-1β-induced hypoglycemia. Here, we show that IL-1β adjusts glucoregulation by inducing its own production in the brain, and that IL-1β-induced hypoglycemia is myeloid differentiation primary response 88 protein (MyD88)-dependent and only partially counteracted by Kir6.2-mediated sensing signaling. Furthermore, we found that, opposite to insulin, IL-1β stimulates brain metabolism. This effect is absent in MyD88-deficient mice, which have neurobehavioral alterations associated to disorders in glucose homeostasis, as during several psychiatric diseases. IL-1β effects on brain metabolism are most likely maintained by IL-1β auto-induction and may reflect a compensatory increase in fuel supply to neural cells. We explore this possibility by directly blocking IL-1 receptors in neural cells. The results showed that, in an activity-dependent and paracrine/autocrine manner, endogenous IL-1 produced by neurons and astrocytes facilitates glucose uptake by these cells. This effect is exacerbated following glutamatergic stimulation and can be passively transferred between cell types. We conclude that the capacity of IL-1β to provide fuel to neural cells underlies its physiological effects on glucoregulation, synaptic plasticity, learning and memory. However, deregulation of IL-1β production could contribute to the alterations in brain glucose metabolism that are detected in several neurologic and psychiatric diseases.Molecular Psychiatry advance online publication, 8 December 2015; doi:10.1038/mp.2015.174.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The factors that influence Leydig cell activity currently include peptides such as neuropeptide Y (NPY). In this work we investigated the ability of this compound, injected directly into the testes of adult male rats, to alter testosterone (T) release into the general circulation. At a 5μg/kg dose administered 1h prior to challenge with human chorionic gonadotropin (hCG, 1.0 U/kg, iv), NPY significantly (P<0.01) blunted the T response to this gonadotropin. The inhibitory effect of NPY was observed in animals pretreated with an antagonist to gonadotropin-releasing hormone or not, indicating that the decrease in plasma T found was most likely independent of pituitary luteinizing hormone. However, testicular levels of steroidogenic acute regulatory (STAR) protein or translocator protein (TSPO) in the Leydig cells did not exhibit consistent changes, which suggested that other mechanisms mediated the blunted T response to hCG. We therefore used autoradiography and immunohistochemistry methodologies to identify NPY receptors in the testes, and found them primarily located on blood vessels. Competition studies further identified these receptors as being Y(1), a subtype previously reported to modulate the vasoconstrictor effect of NPY. The absence of significant changes in STAR and TSPO levels, as well as the absence of Y(1) receptors on Leydig cells, suggest that NPY-induced decreases in T release is unlikely to represent a direct effect of NPY on these cells. Rather, the very high expression levels of Y(1) found in testicular vessels supports the concept that NPY may alter gonadal activity, at least in part, through local vascular impairment of gonadotropin delivery to, and/or blunted T secretion from, Leydig cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During wakefulness and sleep, neurons in the neocortex emit action potentials tonically or in rhythmic bursts, respectively. However, the role of synchronized discharge patterns is largely unknown. We have recently shown that pairings of excitatory postsynaptic potentials (EPSPs) and action potential bursts or single spikes lead to long-term depression (burst-LTD) or long-term potentiation, respectively. In this study, we elucidate the cellular mechanisms of burst-LTD and characterize its functional properties. Whole-cell patch-clamp recordings were obtained from layer V pyramidal cells in somatosensory cortex of juvenile rats in vitro and composite EPSPs and EPSCs were evoked extracellularly in layers II/III. Repetitive burst-pairings led to a long-lasting depression of EPSPs and EPSCs that was blocked by inhibitors of metabotropic glutamate group 1 receptors, phospholipase C, protein kinase C (PKC) and calcium release from the endoplasmic reticulum, and that required an intact machinery for endocytosis. Thus, burst-LTD is induced via a Ca2+- and phosphatidylinositol-dependent activation of PKC and expressed through phosphorylation-triggered endocytosis of AMPA receptors. Functionally, burst-LTD is inversely related to EPSP size and bursts dominate single spikes in determining the sign of synaptic plasticity. Thus burst-firing constitutes a signal by which coincident synaptic inputs are proportionally downsized. Overall, our data thus suggest a mechanism by which synaptic weights can be reconfigured during non-rapid eye movement sleep.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: To describe the distribution of muscarinic receptor subtypes M(1) to M(5) and interstitial cells of Cajal (ICCs) in the gastrointestinal tract of healthy dairy cows. SAMPLE POPULATION: Full-thickness samples were collected from the fundus, corpus, and pyloric part of the abomasum and from the duodenum, ileum, cecum, proximal loop of the ascending colon, and both external loops of the spiral colon of 5 healthy dairy cows after slaughter. PROCEDURES: Samples were fixed in paraformaldehyde and embedded in paraffin. Muscarinic receptor subtypes and ICCs were identified by immunohistochemical analysis. RESULTS: Staining for M(1) receptors was found in the submucosal plexus and myenteric plexus. Antibodies against M(2) receptors stained nuclei of smooth muscle cells only. Evidence of M(3) receptors was found in the lamina propria, in intramuscular neuronal terminals, on intermuscular nerve fibers, and on myocytes of microvessels. There was no staining for M(4) receptors. Staining for M(5) receptors was evident in the myocytes of microvessels and in smooth muscle cells. The ICCs were detected in the myenteric plexus and within smooth muscle layers. Distribution among locations of the bovine gastrointestinal tract did not differ for muscarinic receptor subtypes or ICCs. CONCLUSIONS AND CLINICAL RELEVANCE: The broad distribution of M(1), M(3), M(5), and ICCs in the bovine gastrointestinal tract indicated that these components are likely to play an important role in the regulation of gastrointestinal tract motility in healthy dairy cows. Muscarinic receptors and ICCs may be implicated in the pathogenesis of motility disorders, such as abomasal displacement and cecal dilatation-dislocation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerous peptide receptors have recently been reported to be expressed or overexpressed in various human cancers. For instance, somatostatin receptors are particularly frequently expressed in gastroenteropancreatic neuroendocrine tumors (GEP-NET), including both primaries and metastases. The density is often high, and the distribution is usually homogenous. While various somatostatin receptor subtypes can be expressed in these tumors, the sst(2) is clearly predominant. These receptors represent the molecular basis for a number of clinical applications, including symptomatic therapy with octreotide in hormone-secreting GEP-NET, in vivo diagnostic with radiolabeled diethylene triamine pentaacetic acid octreotide (Octreoscan) to evaluate the extend of the disease, and (90)Y- or (177)Lu-[(90)Y-DOTA]-D: -Phe(1)-Tyr(3) octreotide radiotherapy. GEP-NET can, however, express peptide receptors other than somatostatin receptor: Insulinomas have more glucagon-like peptide 1 receptors than somatostatin receptors; gastrinomas express very high levels of secretin receptors. GEP-NET may also express cholecystokinin 2, bombesin, neuropeptide Y, or vasoactive intestinal peptide receptors. Often, several of these peptide receptors are expressed simultaneously in GEP-NET, providing a molecular basis for in vivo multireceptor targeting of those tumors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

UNLABELLED A high proportion of gut and bronchial neuroendocrine tumors (NETs) overexpresses somatostatin receptors, especially the sst2 subtype. It has also recently been observed that incretin receptors, namely glucagonlike peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) receptors, can be overexpressed in gut and bronchial NETs. However, because not all tumors can express these receptors in sufficient amounts, in vivo imaging with a single radioligand may not always be successful. We therefore evaluated with in vitro methods whether a cocktail of radioligands targeting these 3 receptors would improve tumor labeling. METHODS In vitro receptor autoradiography was performed on 55 NETs, comparing in each successive section of tumor the binding with a single radioligand, either (125)I-Tyr(3)-octreotide, (125)I-GLP-1(7-36)amide, or (125)I-GIP(1-30), with the binding using a cocktail of all 3 radioligands, given concomitantly under identical experimental conditions. RESULTS Using the cocktail of radioligands, all tumors without exception showed moderate to very high binding, with a receptor density corresponding to 1,000-10,000 dpm/mg of tissue; conversely, single-ligand binding, although identifying most tumors as receptor-positive, failed to detect receptors or measured only a low density of receptors below 1,000 dpm/mg in a significant number of tumors. In addition, the cocktail of radioligands always provided a homogeneous labeling of the whole tumor, whereas single radioligands occasionally showed heterogeneous labeling. CONCLUSION The study suggests that the use of a cocktail of 3 radioligands binding to somatostatin receptors, GLP-1 receptors, and GIP receptors would allow detecting virtually all NETs and labeling them homogeneously in vivo, representing a significant improvement for imaging and therapy in NETs.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Abstract Alteration of the surface glycosylation pattern on malignant cells potentially affects tumor immunity by directly influencing interactions with glycan-binding proteins (lectins) on the surface of immunomodulatory cells. The sialic acid-binding Ig-like lectins Siglec-7 and -9 are MHC class I-independent inhibitory receptors on human NK cells that recognize sialic acid-containing carbohydrates. Here, we found that the presence of Siglec-9 defined a subset of cytotoxic NK cells with a mature phenotype and enhanced chemotactic potential. Interestingly, this Siglec-9+ NK cell population was reduced in the peripheral blood of cancer patients. Broad analysis of primary tumor samples revealed that ligands of Siglec-7 and -9 were expressed on human cancer cells of different histological types. Expression of Siglec-7 and -9 ligands was associated with susceptibility of NK cell-sensitive tumor cells and, unexpectedly, of presumably NK cell-resistant tumor cells to NK cell-mediated cytotoxicity. Together, these observations have direct implications for NK cell-based therapies and highlight the requirement to consider both MHC class I haplotype and tumor-specific glycosylation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

NK cells express toll-like receptors (TLR) that recognize conserved pathogen or damage associated molecular patterns and play a fundamental role in innate immunity. Low molecular weight dextran sulfate (DXS), known to inhibit the complement system, has recently been reported by us to inhibit TLR4-induced maturation of human monocyte-derived dendritic cells (MoDC). In this study, we investigated the capability of DXS to interfere with human NK cell activation triggered directly by TLR2 agonists or indirectly by supernatants of TLR4-activated MoDC. Both TLR2 agonists and supernatants of TLR4-activated MoDC activated NK cells phenotypically, as demonstrated by the analysis of NK cell activation markers (CD56, CD25, CD69, NKp30, NKp44, NKp46, DNAM-1 and NKG2D), and functionally as shown by increased NK cell degranulation (CD107a surface expression) and IFN-gamma secretion. DXS prevented the up-regulation of NK cell activation markers triggered by TLR2 ligands or supernatants of TLR4-activated MoDC and dose-dependently abrogated NK cell degranulation and IFN-gamma secretion. In summary our results suggest that DXS may be a useful reagent to inhibit the direct and indirect TLR-mediated activation of NK cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Benzodiazepines act at the major isoforms of GABA type A receptors where they potentiate the current evoked by the agonist GABA. The underlying mechanism of this potentiation is poorly understood, but hypothesized to be related to the mechanism that links agonist binding to channel opening in these ligand activated ion channels. The loop F of the ?(1) and the ?(2) subunit have been implicated in channel gating, and loop F of the ?(2) subunit in the modulation by benzodiazepines. We have identified the conservative point mutation Y168F located N-terminally of loop F in the ?(1) subunit that fails to affect agonist properties. Interestingly, it disrupts modulation by benzodiazepines, but leaves high affinity binding to the benzodiazepine binding site intact. Modulation by barbiturates and neurosteroids is also unaffected. Residue ?(1) Y168 is not located either near the binding pockets for GABA, or for benzodiazepines, or close to the loop F of the ?(2) subunit. Our results support the fact, that broader regions of ligand gated receptors are conformationally affected by the binding of benzodiazepines. We infer that also broader regions could contribute to signaling from GABA agonist binding to channel opening.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An estimated 2%-3% of the world's population is chronically infected with hepatitis C virus (HCV) and this is a major cause of liver disease worldwide. Following acute infection, outcome is variable with acute HCV successfully resolved in some individuals (20%-30%), but in the majority of cases the virus is able to persist. Co-infection with human immunodeficiency virus has been associated with a negative impact on the course of HCV infection. The host's immune response is an important correlate of HCV infection outcome and disease progression. Natural killer (NK) cells provide a major component of the antiviral immune response by recognising and killing virally infected cells. NK cells modulate their activity through a combination of inhibitory and activatory receptors such as the killer immunoglobulin-like receptors (KIRs) that bind to human leukocyte antigen (HLA) Class I molecules. In this workshop component, we addressed the influence of KIR genotypes and their HLA ligands on resolving HCV infection and we discuss the implications of the results of the study of Lopez-Vazquez et al. on KIR and HCV disease progression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The recent identification of a cellular balance between ceramide and sphingosine 1-phosphate (S1P) as a critical regulator of cell growth and death has stimulated increasing research effort to clarify the role of ceramide and S1P in various diseases associated with dysregulated cell proliferation and apoptosis. S1P acts mainly, but not exclusively, by binding to and activating specific cell surface receptors, the so-called S1P receptors. These receptors belong to the class of G protein-coupled receptors that constitute five subtypes, denoted as S1P(1)-S1P(5), and represent attractive pharmacological targets to interfere with S1P action. Whereas classical receptor antagonists will directly block S1P action, S1P receptor agonists have also proven useful, as recently shown for the sphingolipid-like immunomodulatory substance FTY720. When phosphorylated by sphingosine kinase to yield FTY720 phosphate, it acutely acts as an agonist at S1P receptors, but upon prolonged presence, it displays antagonistic activity by specifically desensitizing the S1P(1) receptor subtype. This commentary will cover the most recent developments in the field of S1P receptor pharmacology and highlights the potential therapeutic benefit that can be expected from these novel drug targets in the future.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The galactose-alpha-1,3-galactose (alphaGal) carbohydrate epitope is expressed on porcine, but not human cells, and therefore represents a major target for preformed human anti-pig natural Abs (NAb). Based on results from pig-to-primate animal models, NAb binding to porcine endothelial cells will likely induce complement activation, lysis, and hyperacute rejection in pig-to-human xenotransplantation. Human NK cells may also contribute to innate immune responses against xenografts, either by direct recognition of activating molecules on target cells or by FcgammaRIII-mediated xenogeneic Ab-dependent cellular cytotoxicity (ADCC). The present study addressed the question as to whether the lack of alphaGal protects porcine endothelial cells from NAb/complement-induced lysis, direct xenogeneic NK lysis, NAb-dependent ADCC, and adhesion of human NK cells under shear stress. Homologous recombination, panning, and limiting dilution cloning were used to generate an alphaGal-negative porcine endothelial cell line, PED2*3.51. NAb/complement-induced xenogeneic lysis of PED2*3.51 was reduced by an average of 86% compared with the alphaGal-positive phenotype. PED2*3.51 resisted NK cell-mediated ADCC with a reduction of lysis ranging from 30 to 70%. However, direct xenogeneic lysis of PED2*3.51, mediated either by freshly isolated or IL-2-activated human NK cells or the NK cell line NK92, was not reduced. Furthermore, adhesion of IL-2-activated human NK cells did not rely on alphaGal expression. In conclusion, removal of alphaGal leads to a clear reduction in complement-induced lysis and ADCC, but does not resolve adhesion of NK cells and direct anti-porcine NK cytotoxicity, indicating that alphaGal is not a dominant target for direct human NK cytotoxicity against porcine cells.