36 resultados para NEUROPROTECTION (HYPOTHERMIA AND KETOPROFEN)
Resumo:
Delaying clinical disease onset would greatly reduce neurodegenerative disease burden, but the mechanisms influencing early preclinical progression are poorly understood. Here, we show that in mouse models of familial motoneuron (MN) disease, SOD1 mutants specifically render vulnerable MNs dependent on endogenous neuroprotection signaling involving excitability and mammalian target of rapamycin (mTOR). The most vulnerable low-excitability FF MNs already exhibited evidence of pathology and endogenous neuroprotection recruitment early postnatally. Enhancing MN excitability promoted MN neuroprotection and reversed misfolded SOD1 (misfSOD1) accumulation and MN pathology, whereas reducing MN excitability augmented misfSOD1 accumulation and accelerated disease. Inhibiting metabotropic cholinergic signaling onto MNs reduced ER stress, but enhanced misfSOD1 accumulation and prevented mTOR activation in alpha-MNs. Modulating excitability and/or alpha-MN mTOR activity had comparable effects on the progression rates of motor dysfunction, denervation, and death. Therefore, excitability and mTOR are key endogenous neuroprotection mechanisms in motoneurons to counteract clinically important disease progression in ALS.
Resumo:
A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF's ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both in vivo and in vitro, that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of Gap43, Bdnf and Bcl2 known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.
Resumo:
BACKGROUND The noble gas xenon is considered as a neuroprotective agent, but availability of the gas is limited. Studies on neuroprotection with the abundant noble gases helium and argon demonstrated mixed results, and data regarding neuroprotection after cardiac arrest are scant. We tested the hypothesis that administration of 50% helium or 50% argon for 24 h after resuscitation from cardiac arrest improves clinical and histological outcome in our 8 min rat cardiac arrest model. METHODS Forty animals had cardiac arrest induced with intravenous potassium/esmolol and were randomized to post-resuscitation ventilation with either helium/oxygen, argon/oxygen or air/oxygen for 24 h. Eight additional animals without cardiac arrest served as reference, these animals were not randomized and not included into the statistical analysis. Primary outcome was assessment of neuronal damage in histology of the region I of hippocampus proper (CA1) from those animals surviving until day 5. Secondary outcome was evaluation of neurobehavior by daily testing of a Neurodeficit Score (NDS), the Tape Removal Test (TRT), a simple vertical pole test (VPT) and the Open Field Test (OFT). Because of the non-parametric distribution of the data, the histological assessments were compared with the Kruskal-Wallis test. Treatment effect in repeated measured assessments was estimated with a linear regression with clustered robust standard errors (SE), where normality is less important. RESULTS Twenty-nine out of 40 rats survived until day 5 with significant initial deficits in neurobehavioral, but rapid improvement within all groups randomized to cardiac arrest. There were no statistical significant differences between groups neither in the histological nor in neurobehavioral assessment. CONCLUSIONS The replacement of air with either helium or argon in a 50:50 air/oxygen mixture for 24 h did not improve histological or clinical outcome in rats subjected to 8 min of cardiac arrest.
Resumo:
Induced mild hypothermia after cardiac arrest interferes with clinical assessment of the cardiovascular status of patients. In this situation, non-invasive cardiac output measurement could be useful. Unfortunately, arterial pulse contour is altered by temperature, and the performance of devices using arterial blood pressure contour analysis to derive cardiac output may be insufficient.
Resumo:
Although heart donation after cardiac death (DCD) could greatly improve graft availability, concerns regarding warm ischemic damage typically preclude transplantation. Improving tolerance to warm ischemia may thus open a window of opportunity for DCD hearts. We investigated the hypothesis that, compared with normothermia, mild hypothermia (32° C) initiated after ischemic onset improves cardiac functional recovery upon reperfusion. Isolated, working hearts from adult, male Wistar rats underwent global, no-flow ischemia, and reperfusion (n = 28). After ischemic onset, temperature was maintained at either 37° C for 20 or 30 min or reduced to 32° C for 40, 50, or 60 min. Recovery was measured after 60-min reperfusion. Following normothermic ischemia, recovery of rate-pressure product (RPP; per cent of preischemic value) was almost complete after 20-min ischemia (97 ± 9%), whereas no recovery was detectable after 30-min ischemia. After mildly hypothermic ischemia (32° C), RPP also recovered well after 40 min (86 ± 4%). Markers of metabolism and necrosis were similar in 37° C/20 min and 32° C/40 min groups. Simple reduction in cardiac temperature by a few degrees after the onset of global ischemia dramatically prolongs the interval during which the heart remains resistant to functional deterioration. Preservation of hemodynamic function is associated with improved metabolic recovery and reduced necrosis. The application of mild hypothermia may be a simple first step towards development of clinical protocols for DCD heart recovery.
Resumo:
Background: Therapeutic hypothermia (TH) following perinatal asphyxial encephalopathy in term infants improves mortality and neurodevelopmental outcome. In Europe, most neonatal units perform active cooling whereas in Switzerland passive cooling is predominantly used. Aims: (i) To determine how many infants were cooled within the last 5 years in Switzerland, (ii) to assess the cooling methods, (iii) to evaluate the variation of temperature of different cooling methods, and (iv) to evaluate the use of neuromonitoring. Study design: Retrospective cohort study. Patients: Notes of all cooled term infants between March 2005 and December 2010 in 9 perinatal and two paediatric intensive care centres were retrospectively reviewed. Active cooling was compared to passive cooling alone and to passive cooling in combination with gel packs. Results: 150 infants were cooled. Twenty-seven (18.2%) were cooled actively, 34 (23%) passively and 87 (58.8%) passively in combination with gel packs. Variation of temperature was significantly different between the three methods. Passive cooling had a significant higher variation of temperature (SD of 0.89) than both passive cooling in combination with gel packs (SD of 0.79) and active cooling (SD of 0.76). aEEG before TH was obtained in 35.8% of the infants and 86.5% had full EEG. One cUS was performed in 95.3% and MRI in 62.2% of the infants. Conclusion: Target temperature can be achieved with all three cooling methods. Passive cooling has the highest variation of temperature. Neuromonitoring should be improved in Swiss neonatal and paediatric intensive care units. Our results stress the importance of national registries.
Resumo:
To evaluate the association between haemodynamic variables during the first 24h after intensive care unit (ICU) admission and neurological outcome in out-of-hospital cardiac arrest (OHCA) victims undergoing therapeutic hypothermia.
Resumo:
N-acetylcysteine (NAC) is neuroprotective in animal models of acute brain injury such as caused by bacterial meningitis. However, the mechanism(s) by which NAC exerts neuroprotection is unclear. Gene expression of endothelin-1 (ET-1), which contributes to cerebral blood flow decline in acute brain injury, is partially regulated by reactive oxygen species, and thus a potential target of NAC. We therefore examined the effect of NAC on tumor necrosis factor (TNF)-alpha-induced ET-1 production in cerebrovascular endothelial cells. NAC dose dependently inhibited TNF-alpha-induced preproET-1 mRNA upregulation and ET-1 protein secretion, while upregulation of inducible nitric oxide synthase (iNOS) was unaffected. Intriguingly, NAC had no effect on the initial activation (i.e., IkappaB degradation, nuclear p65 translocation, and Ser536 phosphorylation) of NF-kappaB by TNF-alpha. However, transient inhibition of NF-kappaB DNA binding suggested that NAC may inhibit ET-1 upregulation by inhibiting (a) parallel pathway(s) necessary for full transcriptional activation of NF-kappaB-mediated ET-1 gene expression. Similar to NAC, the MEK1/2 inhibitor U0126, the p38 inhibitor SB203580, and the protein kinase inhibitor H-89 selectively inhibited ET-1 upregulation without affecting nuclear p65 translocation, suggesting that NAC inhibits ET-1 upregulation via inhibition of mitogen- and stress-activated protein kinase (MSK). Supporting this notion, cotreatment with NAC inhibited the TNF-alpha-induced rise in MSK1 and MSK2 kinase activity, while siRNA knock-down experiments showed that MSK2 is the predominant isoform involved in TNF-alpha-induced ET-1 upregulation.
Resumo:
INTRODUCTION: Mild therapeutic hypothermia has been shown to improve outcome for patients after cardiac arrest and may be beneficial for ischaemic stroke and myocardial ischaemia patients. However, in the awake patient, even a small decrease of core temperature provokes vigorous autonomic reactions-vasoconstriction and shivering-which both inhibit efficient core cooling. Meperidine and skin warming each linearly lower vasoconstriction and shivering thresholds. We tested whether a combination of skin warming and a medium dose of meperidine additively would reduce the shivering threshold to below 34 degrees C without producing significant sedation or respiratory depression. METHODS: Eight healthy volunteers participated on four study days: (1) control, (2) skin warming (with forced air and warming mattress), (3) meperidine (target plasma level: 0.9 mug/ml), and (4) skin warming plus meperidine (target plasma level: 0.9 mug/ml). Volunteers were cooled with 4 degrees C cold Ringer lactate infused over a central venous catheter (rate asymptotically equal to 2.4 degrees C/hour core temperature drop). Shivering threshold was identified by an increase of oxygen consumption (+20% of baseline). Sedation was assessed with the Observer's Assessment of Alertness/Sedation scale. RESULTS: Control shivering threshold was 35.5 degrees C +/- 0.2 degrees C. Skin warming reduced the shivering threshold to 34.9 degrees C +/- 0.5 degrees C (p = 0.01). Meperidine reduced the shivering threshold to 34.2 degrees C +/- 0.3 degrees C (p < 0.01). The combination of meperidine and skin warming reduced the shivering threshold to 33.8 degrees C +/- 0.2 degrees C (p < 0.01). There were no synergistic or antagonistic effects of meperidine and skin warming (p = 0.59). Only very mild sedation occurred on meperidine days. CONCLUSION: A combination of meperidine and skin surface warming reduced the shivering threshold to 33.8 degrees C +/- 0.2 degrees C via an additive interaction and produced only very mild sedation and no respiratory toxicity.
Resumo:
BACKGROUND: Mild perioperative hypothermia increases the risk of several severe complications. Perioperative patient warming to preserve normothermia has thus become routine, with forced-air warming being used most often. In previous studies, various resistive warming systems have shown mixed results in comparison with forced-air. Recently, a polymer-based resistive patient warming system has been developed. We compared the efficacy of a standard forced-air warming system with the resistive polymer system in volunteers. METHODS: Eight healthy volunteers participated, each on two separate study days. Unanesthetized volunteers were cooled to a core temperature (tympanic membrane) of 34 degrees C by application of forced-air at 10 degrees C and a circulating-water mattress at 4 degrees C. Meperidine and buspirone were administered to prevent shivering. In a randomly designated order, volunteers were then rewarmed (until their core temperatures reached 36 degrees C) with one of the following active warming systems: (1) forced-air warming (Bair Hugger warming cover #300, blower #750, Arizant, Eden Prairie, MN); or (2) polymer fiber resistive warming (HotDog whole body blanket, HotDog standard controller, Augustine Biomedical, Eden Prairie, MN). The alternate system was used on the second study day. Metabolic heat production, cutaneous heat loss, and core temperature were measured. RESULTS: Metabolic heat production and cutaneous heat loss were similar with each system. After a 30-min delay, core temperature increased nearly linearly by 0.98 (95% confidence interval 0.91-1.04) degrees C/h with forced-air and by 0.92 (0.85-1.00) degrees C/h with resistive heating (P = 0.4). CONCLUSIONS: Heating efficacy and core rewarming rates were similar with full-body forced-air and full-body resistive polymer heating in healthy volunteers.
Resumo:
Morphological findings in death due to hypothermia are variable and predominantly unspecific. Goal of this study was to check the usefulness of post-mortem cross-sectional imaging methods in the diagnosis of externally invisible findings in death due to hypothermia. Three consecutive forensic cases that died due to hypothermia were examined using post-mortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) prior to autopsy. MSCT excluded traumatic skeletal and fatty tissue injury. Using MRI, it was possible to detect hemorrhages within the muscles of the back in all three cases, a so far unknown finding in death due to hypothermia. MRI also allowed the detection of hemorrhages in the iliopsoas muscles. Wishnewsky spots remained radiologically undetected using the present examination techniques. In conclusion, hemorrhages of the muscles of the back might serve as a new sign of death due to hypothermia; however, additional studies on their specificity are necessary. Post-mortem MRI is considered as a good diagnosing tool for muscular hemorrhages, with a great potential for examination and documentation.
Resumo:
Recombinant human erythropoietin (EPO) has been successfully tested as neuroprotectant in brain injury models. The first large clinical trial with stroke patients, however, revealed negative results. Reasons are manifold and may include side-effects such as thrombotic complications or interactions with other medication, EPO concentration, penetration of the blood-brain-barrier and/or route of application. The latter is restricted to systemic application. Here we hypothesize that EPO is neuroprotective in a rat model of acute subdural hemorrhage (ASDH) and that direct cortical application is a feasible route of application in this injury type. The subdural hematoma was surgically evacuated and EPO was applied directly onto the surface of the brain. We injected NaCl, 200, 2000 or 20,000IU EPO per rat i.v. at 15min post-ASDH (400μl autologous venous blood) or NaCl, 0.02, 0.2 or 2IU per rat onto the cortical surface after removal of the subdurally infused blood t at 70min post-ASDH. Arterial blood pressure (MAP), blood chemistry, intracranial pressure (ICP), cerebral blood flow (CBF) and brain tissue oxygen (ptiO2) were assessed during the first hour and lesion volume at 2days after ASDH. EPO 20,000IU/rat (i.v.) elevated ICP significantly. EPO at 200 and 2000IU reduced lesion volume from 38.2±0.6mm(3) (NaCl-treated group) to 28.5±0.9 and 22.2±1.3mm(3) (all p<0.05 vs. NaCl). Cortical application of 0.02IU EPO after ASDH evacuation reduced injury from 36.0±5.2 to 11.2±2.1mm(3) (p=0.007), whereas 0.2IU had no effect (38.0±9.0mm(3)). The highest dose of both application routes (i.v. 20,000IU; cortical 2IU) enlarged the ASDH-induced damage significantly to 46.5±1.7 and 67.9±10.4mm(3) (all p<0.05 vs. NaCl). In order to test whether Tween-20, a solvent of EPO formulation 'NeoRecomon®' was responsible for adverse effects two groups were treated with NaCl or Tween-20 after the evacuation of ASDH, but no difference in lesion volume was detected. In conclusion, EPO is neuroprotective in a model of ASDH in rats and was most efficacious at a very low dose in combination with subdural blood removal. High systemic and topically applied concentrations caused adverse effects on lesion size which were partially due to increased ICP. Thus, patients with traumatic ASDH could be treated with cortically applied EPO but with caution concerning concentration.
Resumo:
Latrepirdine (Dimebon; dimebolin) is a neuroactive compound that was associated with enhanced cognition, neuroprotection and neurogenesis in laboratory animals, and has entered phase II clinical trials for both Alzheimer's disease and Huntington's disease (HD). Based on recent indications that latrepirdine protects cells against cytotoxicity associated with expression of aggregatable neurodegeneration-related proteins, including Aβ42 and γ-synuclein, we sought to determine whether latrepirdine offers protection to Saccharomyces cerevisiae. We utilized separate and parallel expression in yeast of several neurodegeneration-related proteins, including α-synuclein (α-syn), the amyotrophic lateral sclerosis-associated genes TDP43 and FUS, and the HD-associated protein huntingtin with a 103 copy-polyglutamine expansion (HTT gene; htt-103Q). Latrepirdine effects on α-syn clearance and toxicity were also measured following treatment of SH-SY5Y cells or chronic treatment of wild-type mice. Latrepirdine only protected yeast against the cytotoxicity associated with α-syn, and this appeared to occur via induction of autophagy. We further report that latrepirdine stimulated the degradation of α-syn in differentiated SH-SY5Y neurons, and in mouse brain following chronic administration, in parallel with elevation of the levels of markers of autophagic activity. Ongoing experiments will determine the utility of latrepirdine to abrogate α-syn accumulation in transgenic mouse models of α-syn neuropathology. We propose that latrepirdine may represent a novel scaffold for discovery of robust pro-autophagic/anti-neurodegeneration compounds, which might yield clinical benefit for synucleinopathies including Parkinson's disease, Lewy body dementia, rapid eye movement (REM) sleep disorder and/or multiple system atrophy, following optimization of its pro-autophagic and pro-neurogenic activities.