18 resultados para NEEM
Resumo:
When an ice core sample is analysed for its aeolian dust content, it is melted and the particles detected are suspended in water. Consequently, dust measurement techniques employed in the ice core community differ from those used for in-situ studies of airborne dust. Methods commonly used to classify insolubles suspended in a liquid are either based on the particles’ interaction with light or on the detection of resistive pulses by means of Coulter counting. Data sets obtained with Coulter counters are widely accepted as references and other techniques are judged against their ability to reproduce these. Unfortunately, optically acquired ice core dust records were found to differ. By analyzing two sections of the NEEM dust record, two different evaluation procedures are discussed before a third protocol is proposed. It is found that relative changes in the archived dust load can be reproduced, while the simultaneous attainment of absolute concentrations or changes in the grain size frequency histograms in high resolution remains difficult.
Resumo:
Tephra layers preserved within the Greenland ice-cores are crucial for the independent synchronisation of these high-resolution records to other palaeoclimatic archives. Here we present a new and detailed tephrochronological framework for the time period 25,000 e 45,000 a b2k that brings together results from 4 deep Greenland ice-cores. In total, 99 tephra deposits, the majority of which are preserved as cryptotephra, are described from the NGRIP, NEEM, GRIP and DYE-3 records. The major element signatures of single glass shards within these deposits indicate that 93 are basaltic in composition all originating from Iceland. Specifically, 43 originate from Grimsv € otn, 20 are thought to be sourced from the Katla volcanic system and 17 show affinity to the Kverkfj € oll system. Robust geochemical characterisations, independent ages derived from the GICC05 ice-core chronology, and the stratigraphic positions of these deposits relative to the Dansgaard-Oeschger climate events represent a key framework that provides new information on the frequency and nature of volcanic events in the North Atlantic region between GS-3 and GI-12. Of particular importance are 19 tephra deposits that lie on the rapid climatic transitions that punctuate the last glacial period. This framework of well-constrained, time-synchronous tie-lines represents an important step towards the independent synchronisation of marine, terrestrial and ice-core records from the North Atlantic region, in order to assess the phasing of rapid climatic changes during the last glacial period.
Resumo:
The stratospheric degradation of chlorofluorocarbons (CFCs) releases chlorine, which is a major contributor to the destruction of stratospheric ozone (O3). A recent study reported strong chlorine isotope fractionation during the breakdown of the most abundant CFC (CFC-12, CCl2F2, Laube et al., 2010a), similar to effects seen in nitrous oxide (N2O). Using air archives to obtain a long-term record of chlorine isotope ratios in CFCs could help to identify and quantify their sources and sinks. We analyse the three most abundant CFCs and show that CFC-11 (CCl3F) and CFC-113 (CClF2CCl2F) exhibit significant stratospheric chlorine isotope fractionation, in common with CFC-12. The apparent isotope fractionation (ϵapp) for mid- and high-latitude stratospheric samples are respectively −2.4 (0.5) and −2.3 (0.4) ‰ for CFC-11, −12.2 (1.6) and −6.8 (0.8) ‰ for CFC-12 and −3.5 (1.5) and −3.3 (1.2) ‰ for CFC-113, where the number in parentheses is the numerical value of the standard uncertainty expressed in per mil. Assuming a constant isotope composition of emissions, we calculate the expected trends in the tropospheric isotope signature of these gases based on their stratospheric 37Cl enrichment and stratosphere–troposphere exchange. We compare these projections to the long-term δ (37Cl) trends of all three CFCs, measured on background tropospheric samples from the Cape Grim air archive (Tasmania, 1978–2010) and tropospheric firn air samples from Greenland (North Greenland Eemian Ice Drilling (NEEM) site) and Antarctica (Fletcher Promontory site). From 1970 to the present day, projected trends agree with tropospheric measurements, suggesting that within analytical uncertainties, a constant average emission isotope delta (δ) is a compatible scenario. The measurement uncertainty is too high to determine whether the average emission isotope δ has been affected by changes in CFC manufacturing processes or not. Our study increases the suite of trace gases amenable to direct isotope ratio measurements in small air volumes (approximately 200 mL), using a single-detector gas chromatography–mass spectrometry (GC–MS) system.