177 resultados para Myocardial afterload
Resumo:
ABSTRACT: Normal pregnancy corresponds to a procoagulant state. Acute myocardial infarction during pregnancy is rare, yet considering the low non-pregnant risk score of childbearing women it is still surprisingly frequent. We report a case of postpartum recurrent non-ST elevation myocardial infarction in a 40-year-old caucasian woman with essential thrombocythaemia in the presence of a positive JAK-2 mutation and an elevated anti-cardiolipin IgM antibody titer. In the majority of cases of myocardial infarction in pregnancy or in the peripartal period, atherosclerosis, a thrombus or coronary artery dissection is observed. The combination of essential thrombocythaemia and elevated anti-cardiolipin IgM antibody titer in the presence of several cardiovascular risk factors seems to be causative in our case. In conclusion, with the continuing trend of childbearing at older ages, rare or unlikely conditions leading to severe events such as myocardial infarction must be considered in pregnant women.
Resumo:
After myocardial infarction, optimal clinical management depends critically on cardiac imaging. Remodelling and heart failure, presence of inducible ischaemia, presence of dysfunctional viable myocardium, future risk of adverse events including risk of ventricular arrhythmias, need for anticoagulation, and other questions should be addressed by cardiac imaging. Strengths and weaknesses, recent developments, choice, and timing of the different non-invasive techniques are reviewed for this frequent clinical scenario.
Resumo:
Activation of prosurvival kinases and subsequent nitric oxide (NO) production by certain G protein-coupled receptors (GPCRs) protects myocardium in ischemia/reperfusion injury (I/R) models. GPCR signaling pathways are regulated by GPCR kinases (GRKs), and GRK2 has been shown to be a critical molecule in normal and pathological cardiac function.
Resumo:
Morbidity and mortality of myocardial infarction remains significant with resulting left ventricular function presenting as a major determinant of clinical outcome. Protecting the myocardium against ischemia reperfusion injury has become a major therapeutic goal and the identification of key signaling pathways has paved the way for various interventions, but until now with disappointing results. This article describes the recently discovered new role of G-protein-coupled receptor kinase-2 (GRK2), which is known to critically influence the development and progression of heart failure, in acute myocardial injury. This article focuses on potential applications of the GRK2 peptide inhibitor βARKct in ischemic myocardial injury, the use of GRK2 as a biomarker in acute myocardial infarction and discusses the challenges of translating GRK2 inhibition as a cardioprotective strategy to a possible future clinical application.
Resumo:
Cell therapies have gained increasing interest and developed in several approaches related to the treatment of damaged myocardium. The results of multiple clinical trials have already been reported, almost exclusively involving the direct injection of stem cells. It has, however, been postulated that the efficiency of injected cells could possibly be hindered by the mechanical trauma due to the injection and their low survival in the hostile environment. It has indeed been demonstrated that cell mortality due to the injection approaches 90%. Major issues still need to be resolved and bed-to-bench followup is paramount to foster clinical implementations. The tissue engineering approach thus constitutes an attractive alternative since it provides the opportunity to deliver a large number of cells that are already organized in an extracellular matrix. Recent laboratory reports confirmed the interest of this approach and already encouraged a few groups to investigate it in clinical studies. We discuss current knowledge regarding engineered tissue for myocardial repair or replacement and in particular the recent implementation of nanotechnological approaches.
Resumo:
Background During acute coronary syndromes patients perceive intense distress. We hypothesized that retrospective ratings of patients' MI-related fear of dying, helplessness, or pain, all assessed within the first year post-MI, are associated with poor cardiovascular outcome. Methods We studied 304 patients (61 ± 11 years, 85% men) who after a median of 52 days (range 12-365 days) after index MI retrospectively rated the level of distress in the form of fear of dying, helplessness, or pain they had perceived at the time of MI on a numeric scale ranging from 0 ("no distress") to 10 ("extreme distress"). Non-fatal hospital readmissions due to cardiovascular disease (CVD) related events (i.e., recurrent MI, elective and non-elective stent implantation, bypass surgery, pacemaker implantation, cerebrovascular incidents) were assessed at follow-up. The relative CVD event risk was computed for a (clinically meaningful) 2-point increase of distress using Cox proportional hazard models. Results During a median follow-up of 32 months (range 16-45), 45 patients (14.8%) experienced a CVD-related event requiring hospital readmission. Greater fear of dying (HR 1.21, 95% CI 1.03-1.43), helplessness (HR 1.22, 95% CI 1.04-1.44), or pain (HR 1.27, 95% CI 1.02-1.58) were significantly associated with an increased CVD risk without adjustment for covariates. A similarly increased relative risk emerged in patients with an unscheduled CVD-related hospital readmission, i.e., when excluding patients with elective stenting (fear of dying: HR 1.26, 95% CI 1.05-1.51; helplessness: 1.26, 95% CI 1.05-1.52; pain: HR 1.30, 95% CI 1.01-1.66). In the fully-adjusted models controlling for age, the number of diseased coronary vessels, hypertension, and smoking, HRs were 1.24 (95% CI 1.04-1.46) for fear of dying, 1.26 (95% CI 1.06-1.50) for helplessness, and 1.26 (95% CI 1.01-1.57) for pain. Conclusions Retrospectively perceived MI-related distress in the form of fear of dying, helplessness, or pain was associated with non-fatal cardiovascular outcome independent of other important prognostic factors.
Resumo:
Objectives Posttraumatic stress disorder (PTSD) prospectively increases the risk of incident cardiovascular disease (CVD) independent of other risk factors in otherwise healthy individuals. Between 10% and 20% of patients develop PTSD related to the traumatic experience of myocardial infarction (MI). We investigated the hypothesis that PTSD symptoms caused by MI predict adverse cardiovascular outcome. Methods We studied 297 patients (61 ± 10 years, 83% men) who self-rated PTSD symptoms attributable to a previous index MI. Non-fatal CVD-related hospital readmissions (i.e. recurrent MI, elective and non-elective intracoronary stenting, bypass surgery, pacemaker implantation, cardiac arrhythmia, cerebrovascular event) were assessed at follow-up. Cox proportional hazard models controlled for demographic factors, coronary heart disease severity, major CVD risk factors, cardiac medication, and mental health treatment. Results Forty-three patients (14.5%) experienced an adverse event during a mean follow-up of 2.8 years (range 1.3–3.8). A 10 point higher level in the PTSD symptom score (mean 8.8 ± 9.0, range 0–47) revealed a hazard ratio (HR) of 1.42 (95% CI 1.07–1.88) for a CVD-related hospital readmission in the fully adjusted model. A similarly increased risk (HR 1.45, 95% CI 1.07–1.97) emerged for patients with a major or unscheduled CVD-related readmission (i.e. when excluding patients with elective stenting). Conclusions Elevated levels of PTSD symptoms caused by MI may adversely impact non-fatal cardiovascular outcome in post-MI patients independent of other important prognostic factors. The possible importance of PTSD symptoms as a novel prognostic psychosocial risk factor in post-MI patients warrants further study.
Resumo:
This study sought to assess outcomes in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention (PCI) for unprotected left main (LM) disease.
Resumo:
Compared with bare metal stents (BMS), early generation drug-eluting stents (DES) reduce the risk of revascularisation in patients with ST-elevation myocardial infarction (STEMI) at the expense of an increased risk of very late stent thrombosis (ST). Durable polymer coatings for controlled drug release have been identified as a potential trigger for these late adverse events and this has led to the development of newer generation DES with durable and biodegradable polymer surface coatings with improved biocompatibility. In a recent all-comers trial, biolimus-eluting stents with a biodegradable polymer surface coating were found to reduce the risk of very late ST by 80% compared with sirolimus-eluting stents with durable polymer, which also translated into a lower risk of cardiac death and myocardial infarction (MI) beyond one year.