105 resultados para Myeloid cell leukemia-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agrin, an extracellular matrix protein belonging to the heterogeneous family of heparan sulfate proteoglycans (HSPGs), is expressed by cells of the hematopoietic system but its role in leukocyte biology is not yet clear. Here we demonstrate that agrin has a crucial, nonredundant role in myeloid cell development and functions. We have identified lineage-specific alterations that affect maturation, survival and properties of agrin-deficient monocytic cells, and occur at stages later than stem cell precursors. Our data indicate that the cell-autonomous signals delivered by agrin are sensed by macrophages through the α-DC (DG) receptor and lead to the activation of signaling pathways resulting in rearrangements of the actin cytoskeleton during the phagocytic synapse formation and phosphorylation of extracellular signal-regulated kinases (Erk 1/2). Altogether, these data identify agrin as a novel player of innate immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To characterize chemoattractants expressed by the retinal pigment epithelium (RPE) after sodium iodate (NaIO3)-induced damage and to investigate whether ocular-committed stem cells preexist in the bone marrow (BM) and migrate in response to the chemoattractive signals expressed by the damaged RPE. METHODS: C57/BL6 mice were treated with a single intravenous injection of NaIO3 (50 mg/kg) to create RPE damage. At different time points real-time RT-PCR, ELISA, and immunohistochemistry were used to identify chemoattractants secreted in the subretinal space. Conditioned medium from NaIO3-treated mouse RPE was used in an in vitro assay to assess chemotaxis of stem cell antigen-1 positive (Sca-1+) BM mononuclear cells (MNCs). The expression of early ocular markers (MITF, Pax-6, Six-3, Otx) in migrated cells and in MNCs isolated from granulocyte colony-stimulating factor (G-CSF) and Flt3 ligand (FL)-mobilized and nonmobilized peripheral blood (PB) was analyzed by real-time RT-PCR. RESULTS: mRNA for stromal cell-derived factor-1 (SDF-1), C3, hepatocyte growth factor (HGF), and leukemia inhibitory factor (LIF) was significantly increased, and higher SDF-1 and C3 protein secretion from the RPE was found after NaIO3 treatment. A higher number of BMMNCs expressing early ocular markers migrated to conditioned medium from damaged retina. There was also increased expression of early ocular markers in PBMNCs after mobilization. CONCLUSIONS: Damaged RPE secretes cytokines that have been shown to serve as chemoattractants for BM-derived stem cells (BMSCs). Retina-committed stem cells appear to reside in the BM and can be mobilized into the PB by G-CSF and FL. These stem cells may have the potential to serve as an endogenous source for tissue regeneration after RPE damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Upon the incidence of DNA stress, the ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) signaling kinases activate a transient cell cycle arrest that allows cells to repair DNA before proceeding into mitosis. Although the ATM-ATR pathway is highly conserved over species, the mechanisms by which plant cells stop their cell cycle in response to the loss of genome integrity are unclear. We demonstrate that the cell cycle regulatory WEE1 kinase gene of Arabidopsis thaliana is transcriptionally activated upon the cessation of DNA replication or DNA damage in an ATR- or ATM-dependent manner, respectively. In accordance with a role for WEE1 in DNA stress signaling, WEE1-deficient plants showed no obvious cell division or endoreduplication phenotype when grown under nonstress conditions but were hypersensitive to agents that impair DNA replication. Induced WEE1 expression inhibited plant growth by arresting dividing cells in the G2-phase of the cell cycle. We conclude that the plant WEE1 gene is not rate-limiting for cycle progression under normal growth conditions but is a critical target of the ATR-ATM signaling cascades that inhibit the cell cycle upon activation of the DNA integrity checkpoints, coupling mitosis to DNA repair in cells that suffer DNA damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The aim of the present study was to investigate whether bone marrow-derived cells (BMCs) can be induced to express retinal pigment epithelial (RPE) cell markers in vitro and can home to the site of RPE damage after mobilization and express markers of RPE lineage in vivo. METHODS: Adult RPE cells were cocultured with green fluorescence protein (GFP)-labeled stem cell antigen-1 positive (Sca-1(+)) BMCs for 1, 2, and 3 weeks. Cell morphology and expression of RPE-specific markers and markers for other retinal cell types were studied. Using an animal model of sodium iodate (NaIO(3))-induced RPE degeneration, BMCs were mobilized into the peripheral circulation by granulocyte-colony stimulating factor, flt3 ligand, or both. Immunocytochemistry was used to identify and characterize BMCs in the subretinal space in C57BL/6 wild-type (wt) mice and GFP chimeric mice. RESULTS: In vitro, BMCs changed from round to flattened, polygonal cells and expressed cytokeratin, RPE65, and microphthalmia transcription factor (MITF) when cocultured in direct cell-cell contact with RPE. In vivo, BMCs were identified in the subretinal space as Sca-1(+) or c-kit(+) cells. They were also double labeled for GFP and RPE65 or MITF. These cells formed a monolayer on the Bruch membrane in focal areas of RPE damage. CONCLUSIONS: Thus, it appears that BMCs, when mobilized into the peripheral circulation, can home to focal areas of RPE damage and express cell markers of RPE lineage. The use of endogenous BMCs to replace damaged retinal tissue opens new possibilities for cell replacement therapy in ophthalmology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epithelial cells of different phenotypes derived from bovine corpus luteum have been studied intensively in our laboratory. In this study, specific lectin binding was examined for cells of type 1 and 3, which were defined as endothelial cells. In order to confirm differences in their glycocalyx at the light microscopic level, five biotinylated lectins were applied to postconfluent cultures which had been fixed with buffered paraformaldehyde or glutaraldehyde. Cells were not permeabilized with any detergent. Lectin binding was localized with a streptavidin-peroxidase complex which was visualized with two different techniques. The DAB technique detected peroxidase histochemically, while the immunogold technique used an anti-peroxidase gold complex together with silver amplification. Neither cell type 1 nor cell type 3 bound a particular lectin selectively, yet each cell type expressed a particular lectin binding pattern. With the DAB technique, diverse lectin binding patterns were seen, probably indicating either "outside" binding, i.e., a diffuse pattern, a lateral-cell-side pattern and a microvillus-like pattern, or "inside" binding, i.e., a diffuse pattern, and a granule-like pattern. With the immunogold technique, only "outside" binding was observed. In addition, the patterns of single cilia or of single circles were detected, the latter roughly representing 3-micron-sized binding sites for concanavalin A. When localizing them at the ultrastructural level, single circles corresponded with micron-sized discontinuities of the plasma membrane. Shedding vesicles were detected whose outer membrane was labelled with concanavalin A. Our results confirm the diversity of the two cell types under study. The "inside" lectin binding may be caused by way of transient plasma membrane openings and related to shedding of right-side out vesicles ("ectocytosis").

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutropenia is probably the strongest known predisposition to infection with otherwise harmless environmental or microbiota-derived species. Because initial swarming of neutrophils at the site of infection occurs within minutes, rather than the hours required to induce "emergency granulopoiesis," the relevance of having high numbers of these cells available at any one time is obvious. We observed that germ-free (GF) animals show delayed clearance of an apathogenic bacterium after systemic challenge. In this article, we show that the size of the bone marrow myeloid cell pool correlates strongly with the complexity of the intestinal microbiota. The effect of colonization can be recapitulated by transferring sterile heat-treated serum from colonized mice into GF wild-type mice. TLR signaling was essential for microbiota-driven myelopoiesis, as microbiota colonization or transferring serum from colonized animals had no effect in GF MyD88(-/-)TICAM1(-/-) mice. Amplification of myelopoiesis occurred in the absence of microbiota-specific IgG production. Thus, very low concentrations of microbial Ags and TLR ligands, well below the threshold required for induction of adaptive immunity, sets the bone marrow myeloid cell pool size. Coevolution of mammals with their microbiota has probably led to a reliance on microbiota-derived signals to provide tonic stimulation to the systemic innate immune system and to maintain vigilance to infection. This suggests that microbiota changes observed in dysbiosis, obesity, or antibiotic therapy may affect the cross talk between hematopoiesis and the microbiota, potentially exacerbating inflammatory or infectious states in the host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disruption of the blood-brain and blood-spinal cord barriers (BBB and BSCB, respectively) and immune cell infiltration are early pathophysiological hallmarks of multiple sclerosis (MS), its animal model experimental autoimmune encephalomyelitis (EAE), and neuromyelitis optica (NMO). However, their contribution to disease initiation and development remains unclear. In this study, we induced EAE in lys-eGFP-ki mice and performed single, nonterminal intravital imaging to investigate BSCB permeability simultaneously with the kinetics of GFP(+) myeloid cell infiltration. We observed a loss in BSCB integrity within a day of disease onset, which paralleled the infiltration of GFP(+) cells into the CNS and lasted for ∼4 d. Neutrophils accounted for a significant proportion of the circulating and CNS-infiltrating myeloid cells during the preclinical phase of EAE, and their depletion delayed the onset and reduced the severity of EAE while maintaining BSCB integrity. We also show that neutrophils collected from the blood or bone marrow of EAE mice transmigrate more efficiently than do neutrophils of naive animals in a BBB cell culture model. Moreover, using intravital videomicroscopy, we demonstrate that the IL-1R type 1 governs the firm adhesion of neutrophils to the inflamed spinal cord vasculature. Finally, immunostaining of postmortem CNS material obtained from an acutely ill multiple sclerosis patient and two neuromyelitis optica patients revealed instances of infiltrated neutrophils associated with regions of BBB or BSCB leakage. Taken together, our data provide evidence that neutrophils are involved in the initial events that take place during EAE and that they are intimately linked with the status of the BBB/BSCB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myeloproliferative neoplasms (MPNs) are characterized by the clonal expansion of one or more myeloid cell lineage. In most cases, proliferation of the malignant clone is ascribed to defined genetic alterations. MPNs are also associated with aberrant expression and activity of multiple cytokines; however, the mechanisms by which these cytokines contribute to disease pathogenesis are poorly understood. Here, we reveal a non-redundant role for steady-state IL-33 in supporting dysregulated myelopoiesis in a murine model of MPN. Genetic ablation of the IL-33 signaling pathway was sufficient and necessary to restore normal hematopoiesis and abrogate MPN-like disease in animals lacking the inositol phosphatase SHIP. Stromal cell-derived IL-33 stimulated the secretion of cytokines and growth factors by myeloid and non-hematopoietic cells of the BM, resulting in myeloproliferation in SHIP-deficient animals. Additionally, in the transgenic JAK2V617F model, the onset of MPN was delayed in animals lacking IL-33 in radio-resistant cells. In human BM, we detected increased numbers of IL-33-expressing cells, specifically in biopsies from MPN patients. Exogenous IL-33 promoted cytokine production and colony formation by primary CD34+ MPN stem/progenitor cells from patients. Moreover, IL-33 improved the survival of JAK2V617F-positive cell lines. Together, these data indicate a central role for IL-33 signaling in the pathogenesis of MPNs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND INFORMATION Over the past decades, cryo-electron microscopy of vitrified specimens has yielded a detailed understanding of the tubulin and microtubule structures of samples reassembled in vitro from purified components. However, our knowledge of microtubule structure in vivo remains limited by the chemical treatments commonly used to observe cellular architecture using electron microscopy. RESULTS We used cryo-electron microscopy and cryo-electron tomography of vitreous sections to investigate the ultrastructure of microtubules in their cellular context. Vitreous sections were obtained from organotypic slices of rat hippocampus and from Chinese-hamster ovary cells in culture. Microtubules revealed their protofilament ultrastructure, polarity and, in the most favourable cases, molecular details comparable with those visualized in three-dimensional reconstructions of microtubules reassembled in vitro from purified tubulin. The resolution of the tomograms was estimated to be approx. 4 nm, which enabled the detection of luminal particles of approx. 6 nm in diameter inside microtubules. CONCLUSIONS The present study provides a first step towards a description of microtubules, in addition to other macromolecular assemblies, in an unperturbed cellular context at the molecular level. As the resolution appears to be similar to that obtainable with plunge-frozen samples, it should allow for the in vivo identification of larger macromolecular assemblies in vitreous sections of whole cells and tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The function of antigen-specific CD8+ T cells, which may protect against both infectious and malignant diseases, can be impaired by ligation of their inhibitory receptors, which include CTL-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1). Recently, B and T lymphocyte attenuator (BTLA) was identified as a novel inhibitory receptor with structural and functional similarities to CTLA-4 and PD-1. BTLA triggering leads to decreased antimicrobial and autoimmune T cell responses in mice, but its functions in humans are largely unknown. Here we have demonstrated that as human viral antigen-specific CD8+ T cells differentiated from naive to effector cells, their surface expression of BTLA was gradually downregulated. In marked contrast, human melanoma tumor antigen-specific effector CD8+ T cells persistently expressed high levels of BTLA in vivo and remained susceptible to functional inhibition by its ligand herpes virus entry mediator (HVEM). Such persistence of BTLA expression was also found in tumor antigen-specific CD8+ T cells from melanoma patients with spontaneous antitumor immune responses and after conventional peptide vaccination. Remarkably, addition of CpG oligodeoxynucleotides to the vaccine formulation led to progressive downregulation of BTLA in vivo and consequent resistance to BTLA-HVEM-mediated inhibition. Thus, BTLA activation inhibits the function of human CD8+ cancer-specific T cells, and appropriate immunotherapy may partially overcome this inhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Milk cortisol concentration was determined under routine management conditions on 4 farms with an auto-tandem milking parlor and 8 farms with 1 of 2 automatic milking systems (AMS). One of the AMS was a partially forced (AMSp) system, and the other was a free cow traffic (AMSf) system. Milk samples were collected for all the cows on a given farm (20 to 54 cows) for at least 1 d. Behavioral observations were made during the milking process for a subset of 16 to 20 cows per farm. Milk cortisol concentration was evaluated by milking system, time of day, behavior during milking, daily milk yield, and somatic cell count using linear mixed-effects models. Milk cortisol did not differ between systems (AMSp: 1.15 +/- 0.07; AMSf: 1.02 +/- 0.12; auto-tandem parlor: 1.01 +/- 0.16 nmol/L). Cortisol concentrations were lower in evening than in morning milkings (1.01 +/- 0.12 vs. 1.24 +/- 0.13 nmol/L). The daily periodicity of cortisol concentration was characterized by an early morning peak and a late afternoon elevation in AMSp. A bimodal pattern was not evident in AMSf. Finally, milk cortisol decreased by a factor of 0.915 in milking parlors, by 0.998 in AMSp, and increased by a factor of 1.161 in AMSf for each unit of ln(somatic cell count/1,000). We conclude that milking cows in milking parlors or AMS does not result in relevant stress differences as measured by milk cortisol concentrations. The biological relevance of the difference regarding the daily periodicity of milk cortisol concentrations observed between the AMSp and AMSf needs further investigation.