70 resultados para Muscular tension
Resumo:
Mesenchymal stem cell (MSC) therapy has the potential to enhance muscular regeneration. In previous publications, our group was able to show a dose-response relationship in female animals between the amount of transplanted cells and muscle force. The impact of sex on the regeneration of musculoskeletal injuries following MSC transplantation remains unclear.
Resumo:
To investigate the consequences of inborn excessive erythrocytosis, we made use of our transgenic mouse line (tg6) that constitutively overexpresses erythropoietin (Epo) in a hypoxia-independent manner, thereby reaching hematocrit levels of up to 0.89. We detected expression of human Epo in the brain and, to a lesser extent, in the lung but not in the heart, kidney, or liver of tg6 mice. Although no acute cardiovascular complications are observed, tg6 animals have a reduced lifespan. Decreased swim performance was observed in 5-mo-old tg6 mice. At about 7 mo, several tg6 animals developed spastic contractions of the hindlimbs followed by paralysis. Morphological analysis by light and electron microscopy showed degenerative processes in liver and kidney characterized by increased vascular permeability, chronic progressive inflammation, hemosiderin deposition, and general vasodilatation. Moreover, most of the animals showed severe nerve fiber degeneration of the sciatic nerve, decreased number of neuromuscular junctions, and degeneration of skeletal muscle fibers. Most probably, the developing demyelinating neuropathy resulted in muscular degeneration demonstrated in the extensor digitorum longus muscle. Taken together, chronically increased Epo levels inducing excessive erythrocytosis leads to multiple organ degeneration and reduced life expectancy. This model allows investigation of the impact of excessive erythrocytosis in individuals suffering from polycythemia vera, chronic mountain sickness, or in subjects tempted to abuse Epo by means of gene doping.
Resumo:
We hypothesized that in untrained individuals (n=6) a single bout of ergometer endurance exercise provokes a concerted response of muscle transcripts towards a slow-oxidative muscle phenotype over a 24-h period. We further hypothesized this response during recovery to be attenuated after six weeks of endurance training. We monitored the expression profile of 220 selected transcripts in muscle biopsies before as well as 1, 8, and 24 h after a 30-min near-maximal bout of exercise. The generalized gene response of untrained vastus lateralis muscle peaked after 8 h of recovery (P=0.001). It involved multiple transcripts of oxidative metabolism and glycolysis. Angiogenic and cell regulatory transcripts were transiently reduced after 1 h independent of the training state. In the trained state, the induction of most transcripts 8 h after exercise was less pronounced despite a moderately higher relative exercise intensity, partially because of increased steady-state mRNA concentration, and the level of metabolic and extracellular RNAs was reduced during recovery from exercise. Our data suggest that the general response of the transcriptome for regulatory and metabolic processes is different in the trained state. Thus, the response is specifically modified with repeated bouts of endurance exercise during which muscle adjustments are established.
Resumo:
We hypothesized that specific muscular transcript level adaptations participate in the improvement of endurance performances following intermittent hypoxia training in endurance-trained subjects. Fifteen male high-level, long-distance runners integrated a modified living low-training high program comprising two weekly controlled training sessions performed at the second ventilatory threshold for 6 wk into their normal training schedule. The athletes were randomly assigned to either a normoxic (Nor) (inspired O2 fraction = 20.9%, n = 6) or a hypoxic group exercising under normobaric hypoxia (Hyp) (inspired O2 fraction = 14.5%, n = 9). Oxygen uptake and speed at second ventilatory threshold, maximal oxygen uptake (VO2 max), and time to exhaustion (Tlim) at constant load at VO2 max velocity in normoxia and muscular levels of selected mRNAs in biopsies were determined before and after training. VO2 max (+5%) and Tlim (+35%) increased specifically in the Hyp group. At the molecular level, mRNA concentrations of the hypoxia-inducible factor 1alpha (+104%), glucose transporter-4 (+32%), phosphofructokinase (+32%), peroxisome proliferator-activated receptor gamma coactivator 1alpha (+60%), citrate synthase (+28%), cytochrome oxidase 1 (+74%) and 4 (+36%), carbonic anhydrase-3 (+74%), and manganese superoxide dismutase (+44%) were significantly augmented in muscle after exercise training in Hyp only. Significant correlations were noted between muscular mRNA levels of monocarboxylate transporter-1, carbonic anhydrase-3, glucose transporter-4, and Tlim only in the group of athletes who trained in hypoxia (P < 0.05). Accordingly, the addition of short hypoxic stress to the regular endurance training protocol induces transcriptional adaptations in skeletal muscle of athletic subjects. Expressional adaptations involving redox regulation and glucose uptake are being recognized as a potential molecular pathway, resulting in improved endurance performance in hypoxia-trained subjects.
Resumo:
Percutaneous dilatational tracheostomy (PDT) is a frequently conducted procedure in critically ill patients. Bronchoscopic guidance of PDT is generally recommended to minimize the risk of unintentional tracheal injury. We present a case of tracheal tear and tension pneumothorax, a rare but potentially life-threatening complication, during continuously bronchoscopy-guided PDT. Sealing the large tracheal air fistula with the cuff of an endotracheal tube helped bridge time to definitive surgical repair in our patient. Bronchoscopic guidance may minimize, but cannot completely eliminate, the risk of tracheal injury during PDT.
Resumo:
OBJECTIVES: To evaluate the effects on intestinal oxygen supply, and mucosal tissue oxygen tension during haemorrhage and after fluid resuscitation with either blood (B; n=7), gelatine (G; n=8), or lactated Ringer's solution (R; n=8) in an autoperfused, innervated jejunal segment in anaesthetized pigs. METHODS: To induce haemorrhagic shock, 50% of calculated blood volume was withdrawn. Systemic haemodynamics, mesenteric venous and systemic acid-base and blood gas variables, and lactate measurements were recorded. A flowmeter was used for measuring mesenteric arterial blood flow. Mucosal tissue oxygen tension (PO(2)muc), jejunal microvascular haemoglobin oxygen saturation (HbO(2)) and microvascular blood flow were measured. Measurements were performed at baseline, after haemorrhage and at four 20 min intervals after fluid resuscitation. After haemorrhage, animals were retransfused with blood, gelatine or lactated Ringer's solution until baseline pulmonary capillary wedge pressure was reached. RESULTS: After resuscitation, no significant differences in macrohaemodynamic parameters were observed between groups. Systemic and intestinal lactate concentration was significantly increased in animals receiving lactated Ringer's solution [5.6 (1.1) vs 3.3 (1.1) mmol litre(-1); 5.6 (1.1) vs 3.3 (1.2) mmol litre(-1)]. Oxygen supply to the intestine was impaired in animals receiving lactated Ringer's solution when compared with animals receiving blood. Blood and gelatine resuscitation resulted in higher HbO(2) than with lactated Ringer's resuscitation after haemorrhagic shock [B, 43.8 (10.4)%; G, 34.6 (9.4)%; R, 28.0 (9.3)%]. PO(2)muc was better preserved with gelatine resuscitation when compared with lactated Ringer's or blood resuscitation [20.0 (8.8) vs 13.8 (7.1) mm Hg, 15.2 (7.2) mm Hg, respectively]. CONCLUSION: Blood or gelatine infusion improves mucosal tissue oxygenation of the porcine jejunum after severe haemorrhage when compared with lactated Ringer's solution.
Resumo:
Both Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are caused by mutations of the X-linked dystrophin gene. BMD patients are less affected clinically than DMD patients. We present five patients with a diagnosis of BMD. First, two identical twins, with a deletion of exon 48 of the dystrophin gene, who experienced prominent muscle cramps from the age of three. The histopathological examination of muscle biopsies of these two twins revealed only very slight muscle fiber alterations. Second, two brothers who displayed marked, unusual intrafamilial variability of the clinical picture as well as showing a new point mutation in the dystrophin gene. And finally, a fifth boy who displayed a new point mutation in the dystrophin gene. Although he was clinically asymptomatic at the age of 15 and muscle biopsy only showed very minor myopathic signs, serum Creatine Kinase (CK) levels had been considerably elevated for years. Taken together, these cases add to the spectrum of marked discrepancies in clinical, histopathological and molecular genetic findings in BMD.
Resumo:
BACKGROUND: Skeletal muscular counterpulsation (MCP) has been used as a new noninvasive technique for treatment of low cardiac output. The MCP method is based on ECG-triggered skeletal muscle stimulation. The purpose of the present study was to evaluate acute hemodynamic changes induced by MCP in the experimental animal. METHODS: Eight anaesthetized pigs (43+/-4 kg) were studied at rest and after IV â-blockade (10 mg propranolol) before and after MCP. Muscular counterpulsation was performed on both thighs using trains (75 ms duration) of multiple biphasic electrical impulses with a width of 1 ms and a frequency of 200 Hz at low (10 V) and high (30 V) amplitude. ECG-triggering was used to synchronize stimulation to a given time point. LV pressure-volume relations were determined using the conductance catheter. After baseline measurements, MCP was carried out for 10 minutes at low and high stimulation amplitude. The optimal time point for MCP was determined from LV pressure-volume loops using different stimulation time points during systole and diastole. Best results were observed during end-systole and, therefore, this time point was used for stimulation. RESULTS: Under control conditions, MCP was associated with a significant decrease in pulmonary vascular resistance (-18%), a decrease in systemic vascular resistance (-11%) and stroke work index (-4%), whereas cardiac index (+2%) and ejection fraction (+6%) increased slightly. Pressure-volume loops showed a leftward shift with a decrease in end-systolic volume. After â-blockade, cardiac function decreased (HR, MAP, EF, dP/dt max), but it improved with skeletal muscle stimulation (HR +10% and CI +17%, EF +5%). There was a significant decrease in pulmonary (-19%) and systemic vascular resistance (-29%). CONCLUSIONS: In the animal model, ECG-triggered skeletal muscular counterpulsation is associated with a significant improvement in cardiac function at baseline and after IV â-blockade. Thus, MCP represents a new, non-invasive technique which improves cardiac function by diastolic compression of the peripheral arteries and veins, with a decrease in systemic vascular resistance and increase in cardiac output.
Resumo:
Spinal muscular atrophy (SMA) is a lethal hereditary disease caused by homozygous deletion/inactivation of the survival of motoneuron 1 (SMN1) gene. The nearby SMN2 gene, despite its identical coding capacity, is only an incomplete substitute, because a single nucleotide difference impairs the inclusion of its seventh exon in the messenger RNA (mRNA). This splicing defect can be corrected (transiently) by specially designed oligonucleotides. Here we have developed a more permanent correction strategy based on bifunctional U7 small nuclear RNAs (snRNAs). These carry both an antisense sequence that allows specific binding to exon 7 and a splicing enhancer sequence that will improve the recognition of the targeted exon. When expression cassettes for these RNAs are stably introduced into cells, the U7 snRNAs become incorporated into small nuclear ribonucleoprotein (snRNP) particles that will induce a durable splicing correction. We have optimized this strategy to the point that virtually all SMN2 pre-mRNA becomes correctly spliced. In fibroblasts from an SMA patient, this approach induces a prolonged restoration of SMN protein and ensures its correct localization to discrete nuclear foci (gems).
Resumo:
BACKGROUND: Ibopamine is an alpha-adrenergic agent and causes an elevation of intraocular pressure in eyes with increased outflow resistance. It has been proposed as a test substance for the detection of early ocular hydrodynamic disorders. PATIENTS AND METHODS: A total of 64 normal-tension glaucoma suspect eyes without anti-hypertensive treatment were enrolled. A daily pressure curve was registered with measurements at 7:00 am, 8:00 am, 12:00 am, 17:00 pm using an applanation tonometer and a contour tonometer followed by instillation of ibopamine 2% in both eyes. Tonometry was performed every 15 minutes during the following hour. An IOP increase of > 2.0 mmHg was considered positive. RESULTS: The positive test group showed a significant pressure increase from 18.04 to 22.06 mmHg. Ocular pulse amplitude increased from 2.96 to 3.97 mmHg and was positively correlated with the pressure. Intraocular pressure was unchanged in the negative test group. Central corneal thickness was not significantly different in the two groups (p = 0.32). CONCLUSIONS: Ibopamine 2% eye drops have a positive pressure effect in 50% of suspected normal-tension glaucoma eyes and may differentiate between eyes with normal trabecular outflow capacity and eyes with increased resistance in the trabecular meshwork that are prone to pressure peaks and deterioration to glaucoma.