67 resultados para Muscle Cell-proliferation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The signals and molecular mechanisms that regulate the replication of terminally differentiated beta cells are unknown. Here, we report the identification and characterization of transmembrane protein 27 (Tmem27, collectrin) in pancreatic beta cells. Expression of Tmem27 is reduced in Tcf1(-/-) mice and is increased in islets of mouse models with hypertrophy of the endocrine pancreas. Tmem27 forms dimers and its extracellular domain is glycosylated, cleaved and shed from the plasma membrane of beta cells. This cleavage process is beta cell specific and does not occur in other cell types. Overexpression of full-length Tmem27, but not the truncated or soluble protein, leads to increased thymidine incorporation, whereas silencing of Tmem27 using RNAi results in a reduction of cell replication. Furthermore, transgenic mice with increased expression of Tmem27 in pancreatic beta cells exhibit increased beta cell mass. Our results identify a pancreatic beta cell transmembrane protein that regulates cell growth of pancreatic islets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The whisker follicle has CD34-positive stem cells that migrate from their niche near the bulge along the glassy membrane to the whisker bulb, where they participate in the formation of the whisker shaft. Using immunohistochemistry we found the glycoprotein tenascin-C in the fibrous capsule of mouse whisker follicles, along the glassy membrane and in the trabecular region surrounding keratin-15-negative, CD34-positive stem cells. The related glycoprotein tenascin-W is found in the CD34-positive stem cell niche, in nearby trabeculae, and along the glassy membrane. Tenascin-W is also found in the neural stem cell niche of nearby hair follicles. The formation of stress fibers and focal adhesion complexes in CD34-positive whisker-derived stem cells cultured on fibronectin was inhibited by both tenascin-C and tenascin-W, which is consistent with a role for these glycoproteins in promoting the migration of these cells from the niche to the whisker bulb. Tenascin-C, but not tenascin-W, increased the proliferation of whisker follicle stem cells in vitro. Thus, the CD34-positive whisker follicle stem cell niche contains both tenascin-C and tenascin-W, and these glycoproteins may play a role in directing the migration and proliferation of these stem cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prematurely born babies are often treated with glucocorticoids. We studied the consequences of an early postnatal and short dexamethasone treatment (0.1-0.01 microg/g, days 1-4) on lung development in rats, focusing on its influence on peaks of cell proliferation around day 4 and of programmed cell death at days 19-21. By morphological criteria, we observed a dexamethasone-induced premature maturation of the septa (day 4), followed by a transient septal immatureness and delayed alveolarization leading to complete rescue of the structural changes. The numbers of proliferating (anti-Ki67) and dying cells (TdT-mediated dUTP nick end labeling) were determined and compared with controls. In dexamethasone-treated animals, both the peak of cell proliferation and the peak of programmed cell death were reduced to baseline, whereas the expression of tissue transglutaminase (transglutaminase-C), another marker for postnatal lung maturation, was not significantly altered. We hypothesize that a short neonatal course of dexamethasone leads to severe but transient structural changes of the lung parenchyma and influences the balance between cell proliferation and cell death even in later stages of lung maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FUS/TLS (fused in sarcoma/translocated in liposarcoma) protein, a ubiquitously expressed and highly conserved RNA binding protein, has been linked to a variety of cellular processes from mRNA processing to DNA repair. However, the precise function of FUS is not well understood. Recently, mutations in the FUS gene have been identified in familial and sporadic patients of Amyotrophic Lateral Sclerosis, a fatal neurodegenerative disorder characterized by dysfunction and death of motor neurons. Based on the observation that some mutations in the FUS gene induce cytoplasmic accumulation of FUS aggregates, we decided to explore a loss-of-function situation (i.e. inhibition of FUS’ nuclear function) to unravel the role of this protein. To this purpose, we have generated a SH-SY5Y human neuroblastoma cell line which expresses a doxycycline induced shRNA targeting FUS that efficiently depletes the protein. In order to characterize this cell line, we have characterized the poly(A) fraction by RNA deep sequencing. Preliminary results show that FUS depletion affects both mRNA expression and alternative splicing. Upon FUS depletion 330 genes are downregulated and 81 are upregulated. We also found that 395 splicing isoforms were downregulated, while 426 were upregulated. Currently, we are focusing our attention on the pathways which are mostly affected by FUS depletion. In addition, we are currently characterizing how FUS depletion affects cell proliferation and survival. We find that the lack of FUS impairs cell proliferation but does not induce apoptosis. Finally, since MEFs and B-lymphocytes derived from FUS knockdown mice display major sensitivity to ionizing radiation and chromosomal aberrations [1,2], we are exploring the effects of DNA damage in FUS-depleted cells by monitoring important components of DNA Damage Response (DDR). Taken together, these studies may contribute to our knowledge of the role of FUS in these cellular processes and will allow us to draw a clearer picture of mechanisms of neurodegenerative diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose Ceramide kinase (CerK) catalyzes the generation of ceramide-1-phosphate which may regulate various cellular functions, including inflammatory reactions and cell growth. Here, we studied the effect of a recently developed CerK inhibitor, NVP-231, on cancer cell proliferation and viability and investigated the role of cell cycle regulators implicated in these responses. Experimental Approach The breast and lung cancer cell lines MCF-7 and NCI-H358 were treated with increasing concentrations of NVP-231 and DNA synthesis, colony formation and cell death were determined. Flow cytometry was performed to analyse cell cycle distribution of cells and Western blot analysis was used to detect changes in cell cycle regulator expression and activation. Key Results In both cell lines, NVP-231 concentration-dependently reduced cell viability, DNA synthesis and colony formation. Moreover it induced apoptosis, as measured by increased DNA fragmentation and caspase-3 and caspase-9 cleavage. Cell cycle analysis revealed that NVP-231 decreased the number of cells in S phase and induced M phase arrest with an increased mitotic index, as determined by increased histone H3 phosphorylation. The effect on the cell cycle was even more pronounced when NVP-231 treatment was combined with staurosporine. Finally, overexpression of CerK protected, whereas down-regulation of CerK with siRNA sensitized, cells for staurosporine-induced apoptosis. Conclusions and Implications Our data demonstrate for the first time a crucial role for CerK in the M phase control in cancer cells and suggest its targeted inhibition, using drugs such as NVP-231, in combination with conventional pro-apoptotic chemotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several studies have linked overexpression of the LIM and SH3 domain protein 1 (LASP1) to progression of breast, colon, liver, and bladder cancer. However, its expression pattern and role in human prostate cancer (PCa) remained largely undefined. Analysis of published microarray data revealed a significant overexpression of LASP1 in PCa metastases compared to parental primary tumors and normal prostate epithelial cells. Subsequent gene-set enrichment analysis comparing LASP1-high and -low PCa identified an association of LASP1 with genes involved in locomotory behavior and chemokine signaling. These bioinformatic predictions were confirmed in vitro as the inducible short hairpin RNA-mediated LASP1 knockdown impaired migration and proliferation in LNCaP prostate cancer cells. By immunohistochemical staining and semi-quantitative image analysis of whole tissue sections we found an enhanced expression of LASP1 in primary PCa and lymph node metastases over benign prostatic hyperplasia. Strong cytosolic and nuclear LASP1 immunoreactivity correlated with PSA progression. Conversely, qRT-PCR analyses for mir-203, which is a known translational suppressor of LASP1 in matched RNA samples revealed an inverse correlation of LASP1 protein and mir-203 expression. Collectively, our results suggest that loss of mir-203 expression and thus uncontrolled LASP1 overexpression might drive progression of PCa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medulloblastoma (MB) is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K) pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi)-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α) was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH) subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Enamel matrix derivatives (EMDs) have been used clinically for more than a decade for the regeneration of periodontal tissues. The aim of the present study is to analyze the effect on cell growth of EMDs in a gel carrier in comparison to EMDs in a liquid carrier. EMDs in a liquid carrier have been shown to adsorb better to bone graft materials. METHODS Primary human osteoblasts and periodontal ligament (PDL) cells were exposed to EMDs in both gel and liquid carriers and compared for their ability to induce cell proliferation and differentiation. Alizarin red staining and real-time polymerase chain reaction for expression of genes encoding collagen 1, osteocalcin, and runt-related transcription factor 2, as well as bone morphogenetic protein 2 (BMP2), transforming growth factor (TGF)-β1, and interleukin (IL)-1β, were assessed. RESULTS EMDs in both carriers significantly increased cell proliferation of both osteoblasts and PDL cells in a similar manner. Both formulations also significantly upregulated the expression of genes encoding BMP2 and TGF-β1 as well as decreased the expression of IL-1β. EMDs in the liquid carrier further retained similar differentiation potential of both osteoblasts and PDL cells by demonstrating increased collagen and osteocalcin gene expression and significantly higher alizarin red staining. CONCLUSIONS The results from the present study indicate that the new formulation of EMDs in a liquid carrier is equally as potent as EMDs in a gel carrier in inducing osteoblast and PDL activity. Future study combining EMDs in a liquid carrier with bone grafting materials is required to further evaluate its potential for combination therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intracellular parasite Theileria parva infects and transforms bovine T-cells, inducing their uncontrolled proliferation and spread in non-lymphoid as well as lymphoid tissues. This parasite-induced transformation is the predominant factor contributing to the pathogenesis of a lymphoproliferative disease, called East Coast fever. T. parva-transformed cells become independent of antigenic stimulation or exogenous growth factors. A dissection of the signalling pathways that are activated in T. parva-infected cells shows that the parasite bypasses signalling pathways that normally emanate from the T-cell antigen receptor to induce continuous proliferation. This review concentrates on the influence of the parasite on the state of activation of the mitogen-activated protein kinase (MAPK), NF-kappaB and phosphoinositide-3-kinase (PI3-K) pathways in the host cell. Of the MAPKs, JNK, but not ERK or p38, is active, inducing constitutive activation of the transcription factors AP-1 and ATF-2. A crucial step in the transformation process is the persistent activation of the transcription factor NF-kappaB, which protects T. parva-transformed cells from spontaneous apoptosis accompanying the transformation process. Inhibitor studies also suggest an important role for the lipid kinase, PI-3K, in the continuous proliferation of T. parva-transformed lymphocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin 4 (IL-4) is a pleotropic cytokine affecting a wide range of cell types in both the mouse and the human. These activities include regulation of the growth and differentiation of both T and B lymphocytes. The activities of IL-4 in nonprimate, nonmurine systems are not well established. Herein, we demonstrate in the bovine system that IL-4 upregulates production of IgM, IgG1, and IgE in the presence of a variety of costimulators including anti-IgM, Staphylococcus aureus cowan strain I, and pokeweed mitogen. IgE responses are potentiated by the addition of IL-2 to IL-4. Culture of bovine B lymphocytes with IL-4 in the absence of additional costimulators resulted in the increased surface expression of CD23 (low-affinity Fc epsilon RII), IgM, IL-2R, and MHC class II in a dose-dependent manner. IL-4 alone increased basal levels of proliferation of bulk peripheral blood mononuclear cells but in the presence of Con A inhibited proliferation. In contrast to the activities of IL-4 in the murine system, proliferation of TH1- and TH2-like clones was inhibited in a dose-dependent manner as assessed by antigen-or IL-2-driven in vitro proliferative responses. These observations are consistent with the role of IL-4 as a key player in regulation of both T and B cell responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although rare, stent thrombosis remains a severe complication after stent implantation owing to its high morbidity and mortality. Since the introduction of drug-eluting stents (DES), most interventional centers have noted stent thrombosis up to 3 years after implantation, a complication rarely seen with bare-metal stents. Some data from large registries and meta-analyses of randomized trials indicate a higher risk for DES thrombosis, whereas others suggest an absence of such a risk. Several factors are associated with an increased risk of stent thrombosis, including the procedure itself (stent malapposition and/or underexpansion, number of implanted stents, stent length, persistent slow coronary blood flow, and dissections), patient and lesion characteristics, stent design, and premature cessation of antiplatelet drugs. Drugs released from DES exert distinct biological effects, such as activation of signal transduction pathways and inhibition of cell proliferation. As a result, although primarily aimed at preventing vascular smooth muscle cell proliferation and migration (ie, key factors in the development of restenosis), they also impair reendothelialization, which leads to delayed arterial healing, and induce tissue factor expression, which results in a prothrombogenic environment. In the same way, polymers used to load these drugs have been associated with DES thrombosis. Finally, DES impair endothelial function of the coronary artery distal to the stent, which potentially promotes the risk of ischemia and coronary occlusion. Although several reports raise the possibility of a substantially higher risk of stent thrombosis in DES, evidence remains inconclusive; as a consequence, both large-scale and long-term clinical trials, as well as further mechanistic studies, are needed. The present review focuses on the pathophysiological mechanisms and pathological findings of stent thrombosis in DES.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Nitric oxide (NO) inhibits thrombus formation, vascular contraction, and smooth muscle cell proliferation. We investigated whether NO release is enhanced after endothelial NO synthase (eNOS) gene transfer in atherosclerotic human carotid artery ex vivo. METHODS AND RESULTS: Western blotting and immunohistochemistry revealed that transduction enhanced eNOS expression; however, neither nitrite production nor NO release measured by porphyrinic microsensor was altered. In contrast, transduction enhanced NO production in non-atherosclerotic rat aorta and human internal mammary artery. In transduced carotid artery, calcium-dependent eNOS activity was minimal and did not differ from control conditions. Vascular tetrahydrobiopterin concentrations did not differ between the experimental groups.Treatment of transduced carotid artery with FAD, FMN, NADPH, L-arginine, and either sepiapterin or tetrahydrobiopterin did not alter NO release. Superoxide formation was similar in transduced carotid artery and control. Treatment of transduced carotid artery with superoxide dismutase (SOD), PEG-SOD, PEG-catalase did not affect NO release. CONCLUSIONS: eNOS transduction in atherosclerotic human carotid artery results in high expression without any measurable activity of the recombinant protein. The defect in the atherosclerotic vessels is neither caused by cofactor deficiency nor enhanced NO breakdown. Since angioplasty is performed in atherosclerotic arteries,eNOS gene therapy is unlikely to provide clinical benefit.