73 resultados para Multidentate ligand


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymphocyte homeostasis is regulated by mechanisms that control lymphocyte proliferation and apoptosis. Activation-induced cell death is mediated by the expression of death ligands and receptors, which, when triggered, activate an apoptotic cascade. Bovine T cells transformed by the intracellular parasite Theileria parva proliferate in an uncontrolled manner and undergo clonal expansion. They constitutively express the death receptor Fas and its ligand, FasL but do not undergo apoptosis. Upon elimination of the parasite from the host cell by treatment with a theilericidal drug, cells become increasingly sensitive to Fas/FasL-induced apoptosis. In normal T cells, the sensitivity to death receptor killing is regulated by specific inhibitor proteins. We found that anti-apoptotic proteins such as cellular (c)-FLIP, which functions as a catalytically inactive form of caspase-8, and X-chromosome-linked inhibitor of apoptosis protein (IAP) as well as c-IAP, which can block downstream executioner caspases, are constitutively expressed in T. parva-transformed T cells. Expression of these proteins is rapidly down-regulated upon parasite elimination. Antiapoptotic proteins of the Bcl-2 family such as Bcl-2 and Bcl-x(L) are also expressed but, in contrast to c-FLIP, c-IAP, and X-chromosome-linked IAP, do not appear to be tightly regulated by the presence of the parasite. Finally, we show that, in contrast to the situation in tumor cells, the phosphoinositide 3-kinase/Akt pathway is not essential for c-FLIP expression. Our findings indicate that by inducing the expression of antiapoptotic proteins, T. parva allows the host cell to escape destruction by homeostatic mechanisms that would normally be activated to limit the continuous expansion of a T cell population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemokine processing by proteases is emerging as an important regulatory mechanism of leukocyte functions and possibly also of cancer progression. We screened a large panel of chemokines for degradation by cathepsins B and D, two proteases involved in tumor progression. Among the few substrates processed by both proteases, we focused on CCL20, the unique chemokine ligand of CCR6 that is expressed on immature dendritic cells and subtypes of memory lymphocytes. Analysis of the cleavage sites demonstrate that cathepsin B specifically cleaves off four C-terminally located amino acids and generates a CCL20(1-66) isoform with full functional activity. By contrast, cathepsin D totally inactivates the chemotactic potency of CCL20 by generating CCL20(1-55), CCL20(1-52), and a 12-aa C-terminal peptide CCL20(59-70). Proteolytic cleavage of CCL20 occurs also with chemokine bound to glycosaminoglycans. In addition, we characterized human melanoma cells as a novel CCL20 source and as cathepsin producers. CCL20 production was up-regulated by IL-1alpha and TNF-alpha in all cell lines tested, and in human metastatic melanoma cells. Whereas cathepsin D is secreted in the extracellular milieu, cathepsin B activity is confined to cytosol and cellular membranes. Our studies suggest that CCL20 processing in the extracellular environment of melanoma cells is exclusively mediated by cathepsin D. Thus, we propose a model where cathepsin D inactivates CCL20 and possibly prevents the establishment of an effective antitumoral immune response in melanomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fas (CD95/Apo-1) ligand-mediated apoptosis induction of target cells is one of the major effector mechanisms by which cytotoxic lymphocytes (T cells and natural killer cells) kill their target cells. In T cells, Fas ligand expression is tightly regulated at a transcriptional level through the activation of a distinct set of transcription factors. Increasing evidence, however, supports an important role for posttranscriptional regulation of Fas ligand expression and activity. Lipid rafts are cholesterol- and sphingolipid-rich membrane microdomains, critically involved in the regulation of membrane receptor signaling complexes through the clustering and concentration of signaling molecules. Here, we now provide evidence that Fas ligand is constitutively localized in lipid rafts of FasL transfectants and primary T cells. Importantly, disruption of lipid rafts strongly reduces the apoptosis-inducing activity of Fas ligand. Localization to lipid rafts appears to be predominantly mediated by the characteristic cytoplasmic proline-rich domain of Fas ligand because mutations of this domain result in reduced recruitment to lipid rafts and attenuated Fas ligand killing activity. We conclude that Fas ligand clustering in lipid rafts represents an important control mechanism in the regulation of T cell-mediated cytotoxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Normal placentation involves the development of an utero-placental circulation following the migration of the extravillous cytotrophoblasts into the decidua and invasion of the spiral arteries, which are thereby transformed into large vessels of low resistance. Given the documented role of the receptor tyrosine kinase EphB4 and its ligand ephrin-B2 in the establishment of the embryonal vascular network, we hypothesized that these molecules are also instrumental in the development of the human placenta. Monitoring the expression during placental development revealed that in first trimester and term placentae both molecules are equally expressed at the RNA level. In contrast, the protein levels were significantly reduced during gestation. Immunohistochemistry revealed a distinct localization of the EphB4 and ephrin-B2 proteins. EphB4 was predominantly expressed in the villous syncytial trophoblast layer and in a subset of intravillous capillaries. Prominent expression was also observed in the extravillous cytotrophoblast giant cells. In contrast, ephrin-B2 expression was detected in the villous cytotrophoblast and syncytial trophoblast cell layers, as well as initially in all intravillous capillaries. Strong expression was also observed in extravillous anchoring cytotrophoblast cells. Hypoxia is a major inducer of placental development. In vitro studies employing trophoblast-derived cell lines revealed that predominantly ephrin-B2 expression is induced by hypoxia, however, in an Hif-1alpha independent manner. These experiments suggest that EphB4 and ephrin-B2 are instrumental in the establishment of a functional placental structure and of the utero-placental circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High levels of glucagon-like peptide-1 (GLP-1) receptor expression in human insulinomas and gastrinomas provide an attractive target for imaging, therapy, and intraoperative tumor localization, using receptor-avid radioligands. The goal of this study was to establish a tumor model for GLP-1 receptor targeting and to use a newly designed exendin-4-DTPA (DTPA is diethylenetriaminepentaacetic acid) conjugate for GLP-1 receptor targeting. METHODS: Exendin-4 was modified C-terminally with Lys(40)-NH(2), whereby the lysine side chain was conjugated with Ahx-DTPA (Ahx is aminohexanoic acid). The GLP-1 receptor affinity (50% inhibitory concentration [IC(50)] value) of [Lys(40)(Ahx-DTPA)NH(2)]exendin-4 as well as the GLP-1 receptor density in tumors and different organs of Rip1Tag2 mice were determined. Rip1Tag2 mice are transgenic mice that develop insulinomas in a well-defined multistage tumorigenesis pathway. This animal model was used for biodistribution studies, pinhole SPECT/MRI, and SPECT/CT. Peptide stability, internalization, and efflux studies were performed in cultured beta-tumor cells established from tumors of Rip1Tag2 mice. RESULTS: The GLP-1 receptor affinity of [Lys(40)(Ahx-DTPA)NH(2)]exendin-4 was found to be 2.1 +/- 1.1 nmol/L (mean +/- SEM). Because the GLP-1 receptor density in tumors of Rip1Tag2 mice was very high, a remarkably high tumor uptake of 287 +/- 62 %IA/g (% injected activity per gram tissue) was found 4 h after injection. This resulted in excellent tumor visualization by pinhole SPECT/MRI and SPECT/CT. In accordance with in vitro data, [Lys(40)(Ahx-DTPA-(111)In)NH(2)]exendin-4 uptake in Rip1Tag2 mice was also found in nonneoplastic tissues such as pancreas and lung. However, lung and pancreas uptake was distinctly lower compared with that of tumors, resulting in a tumor-to-pancreas ratio of 13.6 and in a tumor-to-lung ratio of 4.4 at 4 h after injection. Furthermore, in vitro studies in cultured beta-tumor cells demonstrated a specific internalization of [Lys(40)(Ahx-DTPA-(111)In)NH(2)]exendin-4, whereas peptide stability studies indicated a high metabolic stability of the radiopeptide in beta-tumor cells and human blood serum. CONCLUSION: The high density of GLP-1 receptors in insulinomas as well as the high specific uptake of [Lys(40)(Ahx-DTPA-(111)In)NH(2)]exendin-4 in the tumor of Rip1Tag2 mice indicate that targeting of GLP-1 receptors in insulinomas may become a useful imaging method to localize insulinomas in patients, either preoperatively or intraoperatively. In addition, Rip1Tag2 transgenic mice represent a suitable animal tumor model for GLP-1 receptor targeting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Fas (CD95/Apo-1) ligand (FasL)-induced apoptosis in Fas-bearing cells is critically involved in modulating immune reactions and tissue repair. Apoptosis has also been described after mechanical vascular injury such as percutaneous coronary intervention. However, the relevance of cell death in this context of vascular repair remains unknown. METHODS AND RESULTS: To determine whether FasL-induced apoptosis is causally related to neointimal lesion formation, we subjected FasL-deficient (generalized lymphoproliferative disorder [gld], C57BL/6J) and corresponding wild-type (WT) mice to carotid balloon distension injury, which induces marked endothelial denudation and medial cell death. FasL expression in WT mice was induced in injured vessels compared with untreated arteries (P<0.05; n=5). Conversely, absence of functional FasL in gld mice decreased medial and intimal apoptosis (terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling [TUNEL] index) at 1 hour and 7 days after balloon injury (P<0.05; n=6). In addition, peritoneal macrophages isolated from gld mice showed no apoptosis and enhanced migration (P<0.05; n=4). In parallel, we observed increased balloon-induced macrophage infiltrations (anti-CD68) in injured arteries of FasL-deficient animals (P<0.05; n=6). Together with enhanced proliferation (bromodeoxyuridine index; P<0.05), these events resulted in a further increase in medial and neointimal cells (P<0.01; n=8) with thickened neointima in gld mice (intima/media ratio, x3.8 of WT; P<0.01). CONCLUSIONS: Our data identify proapoptotic and antiinflammatory effects of endogenous FasL as important factors in the process of neointimal lesion formation after balloon injury. Moreover, they suggest that activation of FasL may decrease neointimal thickening after percutaneous coronary intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transmembrane ligand ephrinB2 and its cognate Eph receptor tyrosine kinases are important regulators of vascular morphogenesis. EphrinB2 may have an active signaling role, resulting in bi-directional signal transduction downstream of both ephrinB2 and Eph receptors. To separate the ligand and receptor-like functions of ephrinB2 in mice, we replaced the endogenous gene by cDNAs encoding either carboxyterminally truncated (ephrinB2(DeltaC)) or, as a control, full-length ligand (ephrinB2(WT)). While homozygous ephrinB2(WT/WT) animals were viable and fertile, loss of the ephrinB2 cytoplasmic domain resulted in midgestation lethality similar to ephrinB2 null mutants (ephrinB2(KO)). The truncated ligand was sufficient to restore guidance of migrating cranial neural crest cells, but ephrinB2(DeltaC/DeltaC) embryos showed defects in vasculogenesis and angiogenesis very similar to those observed in ephrinB2(KO/KO) animals. Our results indicate distinct requirements of functions mediated by the ephrinB carboxyterminus for developmental processes in the vertebrate embryo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eph receptor tyrosine kinases play a critical role in embryonic patterning and angiogenesis. In the adult, they are involved in carcinogenesis and pathological neovascularization. However, the mechanisms underlying their role in tumor formation and metastasis remain to be defined. Here, we demonstrated that stimulation of EphB1 with ephrinB1/Fc led to a marked downregulation of EphB1 protein, a process blocked by the lysosomal inhibitor bafilomycin. Following ephrinB1 stimulation, the ubiquitin ligase Cbl was recruited by EphB1 and then phosphorylated. Both Cbl phosphorylation and EphB1 ubiquitination were blocked by the Src inhibitor PP2. Overexpression of wild-type Cbl, but not of 70Z mutant lacking ligase activity, enhanced EphB1 ubiquitination and degradation. This negative regulation required the tyrosine kinase activity of EphB1 as kinase-dead EphB1-K652R was resistant to Cbl. Glutathione S-transferase binding experiments showed that Cbl bound to EphB1 through its tyrosine kinase-binding domain. In aggregate, we demonstrated that Cbl induces the ubiquitination and lysosomal degradation of activated EphB1, a process requiring EphB1 and Src kinase activity. To our knowledge, this is the first study dissecting the molecular mechanisms leading to EphB1 downregulation, thus paving the way to new means of modulating their angiogenic and tumorigenic properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using variants of the murine BW5147 lymphoma cell-line, we have previously identified 3 monoclonal antibodies (MAbs) that discriminate between metastatic and nonmetastatic BW5147-derived T-cell hybridomas and lymphomas, as well as BW5147-unrelated T-lymphomas. These MAbs were reported to recognize an identical membrane-associated sialoglycoprotein, termed "metastatic T-cell hybridoma antigen" (MTH-Ag). Here, we document that the expression pattern of the MTH-Ag on metastatic and nonmetastatic BW5147 variants correlates with that of the P-selectin glycoprotein ligand 1 (PSGL-1), a sialomucin involved in leukocyte recruitment to sites of inflammation. Moreover, the MAbs against the MTH-Ag recognize PSGL-1 when it is transfected in MTH-Ag-negative BW5147 variants, suggesting that the MTH-Ag is PSGL-1. Overexpression of MTH-Ag/PSGL-1 in MTH-Ag-negative BW5147 variants did not affect their in vivo malignancy. Yet, down-regulation of MTH-Ag/PSGL-1 expression on metastatic, MTH-Ag-positive BW5147 variants, using an RNA interference (RNAi) approach, resulted, in a dose-dependent manner, in a significant reduction of liver and spleen colonization and a delay in mortality of the recipient mice upon intravenous inoculation. Collectively, these results demonstrate that, although MTH-Ag/PSGL-1 overexpression alone may not be sufficient for successful dissemination and organ colonization, MTH-Ag/PSGL-1 plays a critical role in hematogenous metastasis of lymphoid cancer cells.