47 resultados para Multi-Point Method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

By measuring the total crack lengths (TCL) along a gunshot wound channel simulated in ordnance gelatine, one can calculate the energy transferred by a projectile to the surrounding tissue along its course. Visual quantitative TCL analysis of cut slices in ordnance gelatine blocks is unreliable due to the poor visibility of cracks and the likely introduction of secondary cracks resulting from slicing. Furthermore, gelatine TCL patterns are difficult to preserve because of the deterioration of the internal structures of gelatine with age and the tendency of gelatine to decompose. By contrast, using computed tomography (CT) software for TCL analysis in gelatine, cracks on 1-cm thick slices can be easily detected, measured and preserved. In this, experiment CT TCL analyses were applied to gunshots fired into gelatine blocks by three different ammunition types (9-mm Luger full metal jacket, .44 Remington Magnum semi-jacketed hollow point and 7.62 × 51 RWS Cone-Point). The resulting TCL curves reflected the three projectiles' capacity to transfer energy to the surrounding tissue very accurately and showed clearly the typical energy transfer differences. We believe that CT is a useful tool in evaluating gunshot wound profiles using the TCL method and is indeed superior to conventional methods applying physical slicing of the gelatine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern imaging technologies, such as computed tomography (CT) techniques, represent a great challenge in forensic pathology. The field of forensics has experienced a rapid increase in the use of these new techniques to support investigations on critical cases, as indicated by the implementation of CT scanning by different forensic institutions worldwide. Advances in CT imaging techniques over the past few decades have finally led some authors to propose that virtual autopsy, a radiological method applied to post-mortem analysis, is a reliable alternative to traditional autopsy, at least in certain cases. The authors investigate the occurrence and the causes of errors and mistakes in diagnostic imaging applied to virtual autopsy. A case of suicide by a gunshot wound was submitted to full-body CT scanning before autopsy. We compared the first examination of sectional images with the autopsy findings and found a preliminary misdiagnosis in detecting a peritoneal lesion by gunshot wound that was due to radiologist's error. Then we discuss a new emerging issue related to the risk of diagnostic failure in virtual autopsy due to radiologist's error that is similar to what occurs in clinical radiology practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multi-target screening method described in this work allows the simultaneous detection and identification of 700 drugs and metabolites in biological fluids using a hybrid triple-quadrupole linear ion trap mass spectrometer in a single analytical run. After standardization of the method, the retention times of 700 compounds were determined and transitions for each compound were selected by a "scheduled" survey MRM scan, followed by an information-dependent acquisition using the sensitive enhanced product ion scan of a Q TRAP hybrid instrument. The identification of the compounds in the samples analyzed was accomplished by searching the tandem mass spectrometry (MS/MS) spectra against the library we developed, which contains electrospray ionization-MS/MS spectra of over 1,250 compounds. The multi-target screening method together with the library was included in a software program for routine screening and quantitation to achieve automated acquisition and library searching. With the help of this software application, the time for evaluation and interpretation of the results could be drastically reduced. This new multi-target screening method has been successfully applied for the analysis of postmortem and traffic offense samples as well as proficiency testing, and complements screening with immunoassays, gas chromatography-mass spectrometry, and liquid chromatography-diode-array detection. Other possible applications are analysis in clinical toxicology (for intoxication cases), in psychiatry (antidepressants and other psychoactive drugs), and in forensic toxicology (drugs and driving, workplace drug testing, oral fluid analysis, drug-facilitated sexual assault).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image-based modeling of tumor growth combines methods from cancer simulation and medical imaging. In this context, we present a novel approach to adapt a healthy brain atlas to MR images of tumor patients. In order to establish correspondence between a healthy atlas and a pathologic patient image, tumor growth modeling in combination with registration algorithms is employed. In a first step, the tumor is grown in the atlas based on a new multi-scale, multi-physics model including growth simulation from the cellular level up to the biomechanical level, accounting for cell proliferation and tissue deformations. Large-scale deformations are handled with an Eulerian approach for finite element computations, which can operate directly on the image voxel mesh. Subsequently, dense correspondence between the modified atlas and patient image is established using nonrigid registration. The method offers opportunities in atlasbased segmentation of tumor-bearing brain images as well as for improved patient-specific simulation and prognosis of tumor progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20\% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a kernel density correlation based nonrigid point set matching method and shows its application in statistical model based 2D/3D reconstruction of a scaled, patient-specific model from an un-calibrated x-ray radiograph. In this method, both the reference point set and the floating point set are first represented using kernel density estimates. A correlation measure between these two kernel density estimates is then optimized to find a displacement field such that the floating point set is moved to the reference point set. Regularizations based on the overall deformation energy and the motion smoothness energy are used to constraint the displacement field for a robust point set matching. Incorporating this non-rigid point set matching method into a statistical model based 2D/3D reconstruction framework, we can reconstruct a scaled, patient-specific model from noisy edge points that are extracted directly from the x-ray radiograph by an edge detector. Our experiment conducted on datasets of two patients and six cadavers demonstrates a mean reconstruction error of 1.9 mm

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iterative Closest Point (ICP) is a widely exploited method for point registration that is based on binary point-to-point assignments, whereas the Expectation Conditional Maximization (ECM) algorithm tries to solve the problem of point registration within the framework of maximum likelihood with point-to-cluster matching. In this paper, by fulfilling the implementation of both algorithms as well as conducting experiments in a scenario where dozens of model points must be registered with thousands of observation points on a pelvis model, we investigated and compared the performance (e.g. accuracy and robustness) of both ICP and ECM for point registration in cases without noise and with Gaussian white noise. The experiment results reveal that the ECM method is much less sensitive to initialization and is able to achieve more consistent estimations of the transformation parameters than the ICP algorithm, since the latter easily sinks into local minima and leads to quite different registration results with respect to different initializations. Both algorithms can reach the high registration accuracy at the same level, however, the ICP method usually requires an appropriate initialization to converge globally. In the presence of Gaussian white noise, it is observed in experiments that ECM is less efficient but more robust than ICP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Abstractor training is a key element in creating valid and reliable data collection procedures. The choice between in-person vs. remote or simultaneous vs. sequential abstractor training has considerable consequences for time and resource utilization. We conducted a web-based (webinar) abstractor training session to standardize training across six individual Cancer Research Network (CRN) sites for a study of breast cancer treatment effects in older women (BOWII). The goals of this manuscript are to describe the training session, its participants and participants' evaluation of webinar technology for abstraction training. Findings A webinar was held for all six sites with the primary purpose of simultaneously training staff and ensuring consistent abstraction across sites. The training session involved sequential review of over 600 data elements outlined in the coding manual in conjunction with the display of data entry fields in the study's electronic data collection system. Post-training evaluation was conducted via Survey Monkey©. Inter-rater reliability measures for abstractors within each site were conducted three months after the commencement of data collection. Ten of the 16 people who participated in the training completed the online survey. Almost all (90%) of the 10 trainees had previous medical record abstraction experience and nearly two-thirds reported over 10 years of experience. Half of the respondents had previously participated in a webinar, among which three had participated in a webinar for training purposes. All rated the knowledge and information delivered through the webinar as useful and reported it adequately prepared them for data collection. Moreover, all participants would recommend this platform for multi-site abstraction training. Consistent with participant-reported training effectiveness, results of data collection inter-rater agreement within sites ranged from 89 to 98%, with a weighted average of 95% agreement across sites. Conclusions Conducting training via web-based technology was an acceptable and effective approach to standardizing medical record review across multiple sites for this group of experienced abstractors. Given the substantial time and cost savings achieved with the webinar, coupled with participants' positive evaluation of the training session, researchers should consider this instructional method as part of training efforts to ensure high quality data collection in multi-site studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrated all-fiber amplification of 11 ps pulses from a gain-switched laser diode at 1064 nm. The diode was driven at a repetition rate of 40 MHz and delivered 13 µW of fiber-coupled average output power. For the low output pulse energy of 325 fJ we have designed a multi-stage core pumped pre-amplifier in order to keep the contribution of undesired amplified spontaneous emission as low as possible. By using a novel time-domain approach for determining the power spectral density ratio (PSD) of signal to noise, we identified the optimal working point for our pre-amplifier. After the pre-amplifier we reduced the 40 MHz repetition rate to 1 MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we reached a total gain of 73 dB, resulting in pulse energies of >5.6 µJ and peak powers of >0.5 MW. The average PSD-ratio of signal to noise we determined to be 18/1 at the output of the final amplification stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: This paper examines four different levels of possible variation in symptom reporting: occasion, day, person and family. DESIGN: In order to rule out effects of retrospection, concurrent symptom reporting was assessed prospectively using a computer-assisted self-report method. METHODS: A decomposition of variance in symptom reporting was conducted using diary data from families with adolescent children. We used palmtop computers to assess concurrent somatic complaints from parents and children six times a day for seven consecutive days. In two separate studies, 314 and 254 participants from 96 and 77 families, respectively, participated. A generalized multilevel linear models approach was used to analyze the data. Symptom reports were modelled using a logistic response function, and random effects were allowed at the family, person and day level, with extra-binomial variation allowed for on the occasion level. RESULTS: Substantial variability was observed at the person, day and occasion level but not at the family level. CONCLUSIONS: To explain symptom reporting in normally healthy individuals, situational as well as person characteristics should be taken into account. Family characteristics, however, would not help to clarify symptom reporting in all family members.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The Roche CARDIAC proBNP point-of-care (POC) test is the first test intended for the quantitative determination of N-terminal pro-brain natriuretic peptide (NT-proBNP) in whole blood as an aid in the diagnosis of suspected congestive heart failure, in the monitoring of patients with compensated left-ventricular dysfunction and in the risk stratification of patients with acute coronary syndromes. METHODS: A multicentre evaluation was carried out to assess the analytical performance of the POC NT-proBNP test at seven different sites. RESULTS: The majority of all coefficients of variation (CVs) obtained for within-series imprecision using native blood samples was below 10% for both 52 samples measured ten times and for 674 samples measured in duplicate. Using quality control material, the majority of CV values for day-to-day imprecision were below 14% for the low control level and below 13% for the high control level. In method comparisons for four lots of the POC NT-proBNP test with the laboratory reference method (Elecsys proBNP), the slope ranged from 0.93 to 1.10 and the intercept ranged from 1.8 to 6.9. The bias found between venous and arterial blood with the POC NT-proBNP method was < or =5%. All four lots of the POC NT-proBNP test investigated showed excellent agreement, with mean differences of between -5% and +4%. No significant interference was observed with lipaemic blood (triglyceride concentrations up to 6.3 mmol/L), icteric blood (bilirubin concentrations up to 582 micromol/L), haemolytic blood (haemoglobin concentrations up to 62 mg/L), biotin (up to 10 mg/L), rheumatoid factor (up to 42 IU/mL), or with 50 out of 52 standard or cardiological drugs in therapeutic concentrations. With bisoprolol and BNP, somewhat higher bias in the low NT-proBNP concentration range (<175 ng/L) was found. Haematocrit values between 28% and 58% had no influence on the test result. Interference may be caused by human anti-mouse antibodies (HAMA) types 1 and 2. No significant influence on the results with POC NT-proBNP was found using volumes of 140-165 muL. High NT-proBNP concentrations above the measuring range of the POC NT-proBNP test did not lead to false low results due to a potential high-dose hook effect. CONCLUSIONS: The POC NT-proBNP test showed good analytical performance and excellent agreement with the laboratory method. The POC NT-proBNP assay is therefore suitable in the POC setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a method for DRR generation as well as for volume gradients projection using hardware accelerated 2D texture mapping and accumulation buffering and demonstrates its application in 2D-3D registration of X-ray fluoroscopy to CT images. The robustness of the present registration scheme are guaranteed by taking advantage of a coarse-to-fine processing of the volume/image pyramids based on cubic B-splines. A human cadaveric spine specimen together with its ground truth was used to compare the present scheme with a purely software-based scheme in three aspects: accuracy, speed, and capture ranges. Our experiments revealed an equivalent accuracy and capture ranges but with much shorter registration time with the present scheme. More specifically, the results showed 0.8 mm average target registration error, 55 second average execution time per registration, and 10 mm and 10° capture ranges for the present scheme when tested on a 3.0 GHz Pentium 4 computer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To correlate the dimension of the visual field (VF) tested by Goldman kinetic perimetry with the extent of visibility of the highly reflective layer between inner and outer segments of photoreceptors (IOS) seen in optical coherence tomography (OCT) images in patients with retinitis pigmentosa (RP). METHODS: In a retrospectively designed cross-sectional study, 18 eyes of 18 patients with RP were examined with OCT and Goldmann perimetry using test target I4e and compared with 18 eyes of 18 control subjects. A-scans of raw scan data of Stratus OCT images (Carl Zeiss Meditec, AG, Oberkochen, Germany) were quantitatively analyzed for the presence of the signal generated by the highly reflective layer between the IOS in OCT images. Starting in the fovea, the distance to which this signal was detectable was measured. Visual fields were analyzed by measuring the distance from the center point to isopter I4e. OCT and visual field data were analyzed in a clockwise fashion every 30 degrees , and corresponding measures were correlated. RESULTS: In corresponding alignments, the distance from the center point to isopter I4e and the distance to which the highly reflective signal from the IOS can be detected correlate significantly (r = 0.75, P < 0.0001). The greater the distance in VF, the greater the distance measured in OCT. CONCLUSIONS: The authors hypothesize that the retinal structure from which the highly reflective layer between the IOS emanates is of critical importance for visual and photoreceptor function. Further research is warranted to determine whether this may be useful as an objective marker of progression of retinal degeneration in patients with RP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-parametric and quantitative magnetic resonance imaging (MRI) techniques have come into the focus of interest, both as a research and diagnostic modality for the evaluation of patients suffering from mild cognitive decline and overt dementia. In this study we address the question, if disease related quantitative magnetization transfer effects (qMT) within the intra- and extracellular matrices of the hippocampus may aid in the differentiation between clinically diagnosed patients with Alzheimer disease (AD), patients with mild cognitive impairment (MCI) and healthy controls. We evaluated 22 patients with AD (n=12) and MCI (n=10) and 22 healthy elderly (n=12) and younger (n=10) controls with multi-parametric MRI. Neuropsychological testing was performed in patients and elderly controls (n=34). In order to quantify the qMT effects, the absorption spectrum was sampled at relevant off-resonance frequencies. The qMT-parameters were calculated according to a two-pool spin-bath model including the T1- and T2 relaxation parameters of the free pool, determined in separate experiments. Histograms (fixed bin-size) of the normalized qMT-parameter values (z-scores) within the anterior and posterior hippocampus (hippocampal head and body) were subjected to a fuzzy-c-means classification algorithm with downstreamed PCA projection. The within-cluster sums of point-to-centroid distances were used to examine the effects of qMT- and diffusion anisotropy parameters on the discrimination of healthy volunteers, patients with Alzheimer and MCIs. The qMT-parameters T2(r) (T2 of the restricted pool) and F (fractional pool size) differentiated between the three groups (control, MCI and AD) in the anterior hippocampus. In our cohort, the MT ratio, as proposed in previous reports, did not differentiate between MCI and AD or healthy controls and MCI, but between healthy controls and AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is no accepted way of measuring prothrombin time without time loss for patients undergoing major surgery who are at risk of intraoperative dilution and consumption coagulopathy due to bleeding and volume replacement with crystalloids or colloids. Decisions to transfuse fresh frozen plasma and procoagulatory drugs have to rely on clinical judgment in these situations. Point-of-care devices are considerably faster than the standard laboratory methods. In this study we assessed the accuracy of a Point-of-care (PoC) device measuring prothrombin time compared to the standard laboratory method. Patients undergoing major surgery and intensive care unit patients were included. PoC prothrombin time was measured by CoaguChek XS Plus (Roche Diagnostics, Switzerland). PoC and reference tests were performed independently and interpreted under blinded conditions. Using a cut-off prothrombin time of 50%, we calculated diagnostic accuracy measures, plotted a receiver operating characteristic (ROC) curve and tested for equivalence between the two methods. PoC sensitivity and specificity were 95% (95% CI 77%, 100%) and 95% (95% CI 91%, 98%) respectively. The negative likelihood ratio was 0.05 (95% CI 0.01, 0.32). The positive likelihood ratio was 19.57 (95% CI 10.62, 36.06). The area under the ROC curve was 0.988. Equivalence between the two methods was confirmed. CoaguChek XS Plus is a rapid and highly accurate test compared with the reference test. These findings suggest that PoC testing will be useful for monitoring intraoperative prothrombin time when coagulopathy is suspected. It could lead to a more rational use of expensive and limited blood bank resources.