36 resultados para Motion pictures in science.
Resumo:
Viktor von Weizsäcker has been a German medical doctor and philosopher, well known throughout Europe, but hardly received in the Anglo-American culture. He focusses on the crucial epistemological question how one can conduct research on living beings. The article’s title represents a key quote of his opus magnum “Der Gestaltkreis”, which works out a theory of the unity of perception and motion. According to Viktor von Weizsäcker, one cannot separate the two, meaning that we locate ourselves in a fundamental union with the living world, which has lasting influence on our capacity of perception. This idea does not seem too different from Ian Barbour’s idea about critical realism, exploring a “consciousness of ourselves as arising out of rapport, interconnection and participation in processes reaching beyond ourselves.” Both authors, Viktor von Weizsäcker and Ian Barbour, still have lasting influence on the dialog between religion and science, each in their respective cultures – a further reason to compare their core ideas, after presenting Viktor von Weizsäcker’s life and thought. Finally, the theological impact of von Weizsäcker’s thought will be assessed. Following his philosophy, it becomes clear that the miracle of creation is the condition of the possibility of any perception.
Resumo:
PURPOSE: We aimed at further elucidating whether aphasic patients' difficulties in understanding non-canonical sentence structures, such as Passive or Object-Verb-Subject sentences, can be attributed to impaired morphosyntactic cue recognition, and to problems in integrating competing interpretations. METHODS: A sentence-picture matching task with canonical and non-canonical spoken sentences was performed using concurrent eye tracking. Accuracy, reaction time, and eye tracking data (fixations) of 50 healthy subjects and 12 aphasic patients were analysed. RESULTS: Patients showed increased error rates and reaction times, as well as delayed fixation preferences for target pictures in non-canonical sentences. Patients' fixation patterns differed from healthy controls and revealed deficits in recognizing and immediately integrating morphosyntactic cues. CONCLUSION: Our study corroborates the notion that difficulties in understanding syntactically complex sentences are attributable to a processing deficit encompassing delayed and therefore impaired recognition and integration of cues, as well as increased competition between interpretations.
Resumo:
OBJECTIVE To determine the biomechanical effect of an intervertebral spacer on construct stiffness in a PVC model and cadaveric canine cervical vertebral columns stabilized with monocortical screws/polymethylmethacrylate (PMMA). STUDY DESIGN Biomechanical study. SAMPLE POPULATION PVC pipe; cadaveric canine vertebral columns. METHODS PVC model-PVC pipe was used to create a gap model mimicking vertebral endplate orientation and disk space width of large-breed canine cervical vertebrae; 6 models had a 4-mm gap with no spacer (PVC group 1); 6 had a PVC pipe ring spacer filling the gap (PCV group 2). Animals-large breed cadaveric canine cervical vertebral columns (C2-C7) from skeletally mature dogs without (cadaveric group 1, n = 6, historical data) and with an intervertebral disk spacer (cadaveric group 2, n = 6) were used. All PVC models and cadaver specimens were instrumented with monocortical titanium screws/PMMA. Stiffness of the 2 PVC groups was compared in extension, flexion, and lateral bending using non-destructive 4-point bend testing. Stiffness testing in all 3 directions was performed of the unaltered C4-C5 vertebral motion unit in cadaveric spines and repeated after placement of an intervertebral cortical allograft ring and instrumentation. Data were compared using a linear mixed model approach that also incorporated data from previously tested spines with the same screw/PMMA construct but without disk spacer (cadaveric group 1). RESULTS Addition of a spacer increased construct stiffness in both the PVC model (P < .001) and cadaveric vertebral columns (P < .001) compared to fixation without a spacer. CONCLUSIONS Addition of an intervertebral spacer significantly increased construct stiffness of monocortical screw/PMMA fixation.
Resumo:
We investigated the role of horizontal body motion on the processing of numbers. We hypothesized that leftward self-motion leads to shifts in spatial attention and therefore facilitates the processing of small numbers, and vice versa, we expected that rightward self-motion facilitates the processing of large numbers. Participants were displaced by means of a motion platform during a parity judgment task. We found a systematic influence of self-motion direction on number processing, suggesting that the processing of numbers is intertwined with the processing of self-motion perception. The results differed from known spatial numerical compatibility effects in that self-motion exerted a differential influence on inner and outer numbers of the given interval. The results highlight the involvement of sensory body motion information in higher-order spatial cognition.
Resumo:
Anelis Kaiser is associate researcher at the Center for Cognitive Science at the University of Freiburg, Germany. Dr. Kaiser recently co-edited a special issue of the journal Neuroethics on gender and brain science. She is co-founder (with Isabelle Dussauge) of the interdisciplinary network NeuroGenderings, which brings together experts from the brain sciences, the humanities and science studies (STS) to critically study the sexed brain. She has published on sex and gender as constructed categories in science as well as on the topics of multilingualism and language processing in the brain. Co-sponsored with the Center for Lesbian and Gay Studies. - See more at: http://www.gc.cuny.edu/Page-Elements/Academics-Research-Centers-Initiatives/Centers-and-Institutes/Center-for-the-Study-of-Women-and-Society/Center-Events#sthash.bDeBg5fk.dpuf
Resumo:
The recurrent interaction among orientation-selective neurons in the primary visual cortex (V1) is suited to enhance contours in a noisy visual scene. Motion is known to have a strong pop-up effect in perceiving contours, but how motion-sensitive neurons in V1 support contour detection remains vastly elusive. Here we suggest how the various types of motion-sensitive neurons observed in V1 should be wired together in a micro-circuitry to optimally extract contours in the visual scene. Motion-sensitive neurons can be selective about the direction of motion occurring at some spot or respond equally to all directions (pandirectional). We show that, in the light of figure-ground segregation, direction-selective motion neurons should additively modulate the corresponding orientation-selective neurons with preferred orientation orthogonal to the motion direction. In turn, to maximally enhance contours, pandirectional motion neurons should multiplicatively modulate all orientation-selective neurons with co-localized receptive fields. This multiplicative modulation amplifies the local V1-circuitry among co-aligned orientation-selective neurons for detecting elongated contours. We suggest that the additive modulation by direction-specific motion neurons is achieved through synaptic projections to the somatic region, and the multiplicative modulation by pandirectional motion neurons through projections to the apical region of orientation-specific pyramidal neurons. For the purpose of contour detection, the V1-intrinsic integration of motion information is advantageous over a downstream integration as it exploits the recurrent V1-circuitry designed for that task.
Resumo:
Music is an intriguing stimulus widely used in movies to increase the emotional experience. However, no brain imaging study has to date examined this enhancement effect using emotional pictures (the modality mostly used in emotion research) and musical excerpts. Therefore, we designed this functional magnetic resonance imaging study to explore how musical stimuli enhance the feeling of affective pictures. In a classical block design carefully controlling for habituation and order effects, we presented fearful and sad pictures (mostly taken from the IAPS) either alone or combined with congruent emotional musical excerpts (classical pieces). Subjective ratings clearly indicated that the emotional experience was markedly increased in the combined relative to the picture condition. Furthermore, using a second-level analysis and regions of interest approach, we observed a clear functional and structural dissociation between the combined and the picture condition. Besides increased activation in brain areas known to be involved in auditory as well as in neutral and emotional visual-auditory integration processes, the combined condition showed increased activation in many structures known to be involved in emotion processing (including for example amygdala, hippocampus, parahippocampus, insula, striatum, medial ventral frontal cortex, cerebellum, fusiform gyrus). In contrast, the picture condition only showed an activation increase in the cognitive part of the prefrontal cortex, mainly in the right dorsolateral prefrontal cortex. Based on these findings, we suggest that emotional pictures evoke a more cognitive mode of emotion perception, whereas congruent presentations of emotional visual and musical stimuli rather automatically evoke strong emotional feelings and experiences.
Resumo:
If we postulate a need for the transformation of society towards sustainable development, we also need to transform science and overcome the fact/value split that makes it impossible for science to be accountable to society. The orientation of this paradigm transformation in science has been under debate for four decades, generating important theoretical concepts, but they have had limited impact until now. This is due to a contradictory normative science policy framing that science has difficulties dealing with, not least of all because the dominant framing creates a lock-in. We postulate that in addition to introducing transdisciplinarity, science needs to strive for integration of the normative aspect of sustainable development at the meta-level. This requires a strategically managed niche within which scholars and practitioners from many different disciplines can engage in a long-term common learning process, in order to become a “thought collective” (Fleck) capable of initiating the paradigm transformation. Arguing with Piaget that “decentration” is essential to achieve normative orientation and coherence in a learning collective, we introduce a learning approach—Cohn's “Theme-Centred Interaction”—which provides a methodology for explicitly working with the objectivity and subjectivity of statements and positions in a “real-world” context, and for consciously integrating concerns of individuals in their interdependence with the world. This should enable a thought collective to address the epistemological and ethical barriers to science for sustainable development.
Resumo:
BACKGROUND: To investigate if non-rigid image-registration reduces motion artifacts in triggered and non-triggered diffusion tensor imaging (DTI) of native kidneys. A secondary aim was to determine, if improvements through registration allow for omitting respiratory-triggering. METHODS: Twenty volunteers underwent coronal DTI of the kidneys with nine b-values (10-700 s/mm2 ) at 3 Tesla. Image-registration was performed using a multimodal nonrigid registration algorithm. Data processing yielded the apparent diffusion coefficient (ADC), the contribution of perfusion (FP ), and the fractional anisotropy (FA). For comparison of the data stability, the root mean square error (RMSE) of the fitting and the standard deviations within the regions of interest (SDROI ) were evaluated. RESULTS: RMSEs decreased significantly after registration for triggered and also for non-triggered scans (P < 0.05). SDROI for ADC, FA, and FP were significantly lower after registration in both medulla and cortex of triggered scans (P < 0.01). Similarly the SDROI of FA and FP decreased significantly in non-triggered scans after registration (P < 0.05). RMSEs were significantly lower in triggered than in non-triggered scans, both with and without registration (P < 0.05). CONCLUSION: Respiratory motion correction by registration of individual echo-planar images leads to clearly reduced signal variations in renal DTI for both triggered and particularly non-triggered scans. Secondarily, the results suggest that respiratory-triggering still seems advantageous.J. Magn. Reson. Imaging 2014. (c) 2014 Wiley Periodicals, Inc.
Resumo:
Die Theology & Science Community, die vor einem halben Jahrhundert begründet worden ist, blüht und gedeiht. Von Anfang an lag dabei die Methodenfrage im Zentrum: wie kann man diese so verschiedenen Gebiete in Beziehung setzen? Dies soll im Folgenden unter Berücksichtigung von Fragen der Erkenntnistheorie, Fragen der Natur wissenschaftlicher und religiöser Sprache und Fragen der Theoriekonstruktion, Theoriewahl und Theorieverteidigung zu beantworten versucht werden.