22 resultados para Most Probable Number
Resumo:
BACKGROUND: Despite its limitations, citation analysis remains one of the best currently available tools for quantifying the impact of articles. Bibliometric studies list the "best-sellers" in a single location, and they have been published frequently in many fields during recent years. The purpose of the present study was to report the qualities and characteristics of citation classics in orthopaedic knee research. METHODS: The database of the Institute for Scientific Information (ISI) was utilized for identification of articles published from 1945 to March 2014. All knee articles that had been published in sixty-five orthopaedic and twenty-nine rheumatology journals and that had been cited at least 200 times were identified. The top 100 were selected for further analysis of authorship, source journal, number of citations, citation rate (both since publication and in 2013), geographic origin, article type, and level of evidence. RESULTS: The publication dates of the 100 most-cited articles ranged from 1948 to 2007, with the greatest number of articles published in the 1980s. Citations per article ranged from 2640 to 287. All articles were published in eleven of the ninety-four journals. The leading countries of origin were the U.S. followed by the U.K. and Sweden. The two main focus areas were sports traumatology and degenerative disease. The number of citations per article was also greatest for articles published in the 1980s. Basic research articles were cited more quickly, but not more often, than clinical articles. Most articles represented Level-IV evidence, followed by Levels II, III, and I. CONCLUSIONS: This bibliometric study is likely to include a list of intellectual milestones in orthopaedic knee research. It is apparent that a high level of evidence is not mandatory for an article to gain a large number of citations. Bibliometric reports provide a reflection of the quality of cited research published in a specific field and should therefore provoke thinking within the scientific community.
Resumo:
Increasing evidence indicates that tumor microenvironment (TME) is crucial in tumor survival and metastases. Inflammatory cells accumulate around tumors and strangely appear to be permissive to their growth. One key stroma cell is the mast cell (MC), which can secrete numerous pro- and antitumor molecules. We investigated the presence and degranulation state of MC in pancreatic ductal adenocarcinoma (PDAC) as compared to acute ancreatitis (AP). Three different detection methods: (a) toluidine blue staining, as well as immunohistochemistry for (b) tryptase and (c) c-kit, were utilized to assess the number and extent of degranulation of MC in PDAC tissue (n=7), uninvolved pancreatic tissue derived from tumor-free margins (n=7) and tissue form AP (n=4). The number of MC detected with all three methods was significantly increased in PDAC, as compared to normal pancreatic tissue derived from tumor-free margins (p<0.05). The highest number of MC was identified by c-kit, 22.2∓7.5 per high power field (HPF) in PDAC vs 9.7∓5.1 per HPF in normal tissue. Contrary to MC in AP, where most of the detected MC were found degranulated, MC in PDAC appeared intact. In conclusion, MC are increased in number, but not degranulated in PDAC, suggesting that they may contribute to cancer growth by permitting selective release of pro-tumorogenic molecules.
Resumo:
Positive-stranded viruses synthesize their RNA in membrane-bound organelles, but it is not clear how this benefits the virus or the host. For coronaviruses, these organelles take the form of double-membrane vesicles (DMVs) interconnected by a convoluted membrane network. We used electron microscopy to identify murine coronaviruses with mutations in nsp3 and nsp14 that replicated normally while producing only half the normal amount of DMVs under low-temperature growth conditions. Viruses with mutations in nsp5 and nsp16 produced small DMVs but also replicated normally. Quantitative reverse transcriptase PCR (RT-PCR) confirmed that the most strongly affected of these, the nsp3 mutant, produced more viral RNA than wild-type virus. Competitive growth assays were carried out in both continuous and primary cells to better understand the contribution of DMVs to viral fitness. Surprisingly, several viruses that produced fewer or smaller DMVs showed a higher fitness than wild-type virus at the reduced temperature, suggesting that larger and more numerous DMVs do not necessarily confer a competitive advantage in primary or continuous cell culture. For the first time, this directly demonstrates that replication and organelle formation may be, at least in part, studied separately during infection with positive-stranded RNA virus. IMPORTANCE The viruses that cause severe acute respiratory syndrome (SARS), poliomyelitis, and hepatitis C all replicate in double-membrane vesicles (DMVs). The big question about DMVs is why they exist in the first place. In this study, we looked at thousands of infected cells and identified two coronavirus mutants that made half as many organelles as normal and two others that made typical numbers but smaller organelles. Despite differences in DMV size and number, all four mutants replicated as efficiently as wild-type virus. To better understand the relative importance of replicative organelles, we carried out competitive fitness experiments. None of these viruses was found to be significantly less fit than wild-type, and two were actually fitter in tests in two kinds of cells. This suggests that viruses have evolved to have tremendous plasticity in the ability to form membrane-associated replication complexes and that large and numerous DMVs are not exclusively associated with efficient coronavirus replication.
Resumo:
BACKGROUND The copy number variation (CNV) in beta-defensin genes (DEFB) on human chromosome 8p23 has been proposed to contribute to the phenotypic differences in inflammatory diseases. However, determination of exact DEFB CN is a major challenge in association studies. Quantitative real-time PCR (qPCR), paralog ratio tests (PRT) and multiplex ligation-dependent probe amplification (MLPA) have been extensively used to determine DEFB CN in different laboratories, but inter-method inconsistencies were observed frequently. In this study we asked which one is superior among the three methods for DEFB CN determination. RESULTS We developed a clustering approach for MLPA and PRT to statistically correlate data from a single experiment. Then we compared qPCR, a newly designed PRT and MLPA for DEFB CN determination in 285 DNA samples. We found MLPA had the best convergence and clustering results of the raw data and the highest call rate. In addition, the concordance rates between MLPA or PRT and qPCR (32.12% and 37.99%, respectively) were unacceptably low with underestimated CN by qPCR. Concordance rate between MLPA and PRT (90.52%) was high but PRT systematically underestimated CN by one in a subset of samples. In these samples a sequence variant which caused complete PCR dropout of the respective DEFB cluster copies was found in one primer binding site of one of the targeted paralogous pseudogenes. CONCLUSION MLPA is superior to PRT and even more to qPCR for DEFB CN determination. Although the applied PRT provides in most cases reliable results, such a test is particularly sensitive to low-frequency sequence variations preferably accumulating in loci like pseudogenes which are most likely not under selective pressure. In the light of the superior performance of multiplex assays, the drawbacks of such single PRTs could be overcome by combining more test markers.
Resumo:
STUDY DESIGN Bibliometric study of current literature. OBJECTIVE To identify and analyze the 100 most cited publications in cervical spine research. SUMMARY OF BACKGROUND DATA The cervical spine is a dynamic field of research with many advances made within the last century. However, the literature has never been comprehensively analyzed to identify and compare the most influential articles as measured by the number of citations. METHODS All databases of the Thomson Reuters Web of Knowledge were utilized in a two-step approach. First, the 150 most cited cervical spine studies up to and including 2014 were identified using four keywords. Second, all keywords related to the cervical spine found in the 150 studies (n = 38) were used to conduct a second search of the database. The top 100 most cited articles were hereby selected for further analysis of current and past citations, authorship, geographic origin, article type, and level of evidence. RESULTS Total citations for the 100 studies identified ranged from 173 to 879. They were published in the time frame 1952 to 2008 in a total of 30 different journals. Most studies (n = 42) were published in the decade 1991 - 2000. Level of evidence ranged from 1 to 5 with 39 studies in the level 4 category. 13 researchers were first author more than once and 9 researchers senior author more than once. The two step approach with a secondary widening of search terms yielded an additional 27 studies, including the first ranking article. CONCLUSIONS This bibliometric study is likely to include some of the most important milestones in the field of cervical spine research of the last 100 years. LEVEL OF EVIDENCE 3.
Resumo:
BACKGROUND Many studies quantitatively analyzing scientific papers have appeared in the last 2 years. Citation analysis is a commonly used bibliometric method. In spite of some limitations, it remains a good measure of the impact an article has on a specific field, specialty, or a journal. The aim of this study was to analyze the qualities and characteristics of the 100 most cited articles in the field of bariatric surgery. METHODS The Thomson Reuters Web of Knowledge was used to list all bariatric surgery-related articles (BSRA) published from 1945 to 2014. The top 100 most cited BSRA in 354 surgical and high impact general journals were selected for further analysis. RESULTS Most of the articles were published in the 2000s (60%). The top 100 most cited were published in 17 of the 354 journals. Leading countries were USA followed by Canada and Australia. Most of the articles published (76%) were clinical experience articles. The most common level of evidence was IV (42%). CONCLUSIONS Many of the milestone papers in bariatric surgery have been included in this bibliometric study. A huge increase in research activity during the last decade is clearly visible in the field. It is apparent that the number of citations of an article is not related to its level of evidence; a fact that is increasingly being emphasized in surgical research.
Resumo:
BACKGROUND Listeria (L.) monocytogenes causes fatal infections in many species including ruminants and humans. In ruminants, rhombencephalitis is the most prevalent form of listeriosis. Using multilocus variable number tandem repeat analysis (MLVA) we recently showed that L. monocytogenes isolates from ruminant rhombencephalitis cases are distributed over three genetic complexes (designated A, B and C). However, the majority of rhombencephalitis strains and virtually all those isolated from cattle cluster in MLVA complex A, indicating that strains of this complex may have increased neurotropism and neurovirulence. The aim of this study was to investigate whether ruminant rhombencephalitis strains have an increased ability to propagate in the bovine hippocampal brain-slice model and can be discriminated from strains of other sources. For this study, forty-seven strains were selected and assayed on brain-slice cultures, a bovine macrophage cell line (BoMac) and a human colorectal adenocarcinoma cell line (Caco-2). They were isolated from ruminant rhombencephalitis cases (n = 21) and other sources including the environment, food, human neurolisteriosis cases and ruminant/human non-encephalitic infection cases (n = 26). RESULTS All but one L. monocytogenes strain replicated in brain slices, irrespectively of the source of the isolate or MLVA complex. The replication of strains from MLVA complex A was increased in hippocampal brain-slice cultures compared to complex C. Immunofluorescence revealed that microglia are the main target cells for L. monocytogenes and that strains from MLVA complex A caused larger infection foci than strains from MLVA complex C. Additionally, they caused larger plaques in BoMac cells, but not CaCo-2 cells. CONCLUSIONS Our brain slice model data shows that all L. monocytogenes strains should be considered potentially neurovirulent. Secondly, encephalitis strains cannot be conclusively discriminated from non-encephalitis strains with the bovine organotypic brain slice model. The data indicates that MLVA complex A strains are particularly adept at establishing encephalitis possibly by virtue of their higher resistance to antibacterial defense mechanisms in microglia cells, the main target of L. monocytogenes.