30 resultados para Models for count data
Resumo:
The mid-Holocene (6 kyr BP; thousand years before present) is a key period to study the consistency between model results and proxy-based reconstruction data as it corresponds to a standard test for models and a reasonable number of proxy-based records is available. Taking advantage of this relatively large amount of information, we have compared a compilation of 50 air and sea surface temperature reconstructions with the results of three simulations performed with general circulation models and one carried out with LOVECLIM, a model of intermediate complexity. The conclusions derived from this analysis confirm that models and data agree on the large-scale spatial pattern but the models underestimate the magnitude of some observed changes and that large discrepancies are observed at the local scale. To further investigate the origin of those inconsistencies, we have constrained LOVECLIM to follow the signal recorded by the proxies selected in the compilation using a data-assimilation method based on a particle filter. In one simulation, all the 50 proxy-based records are used while in the other two only the continental or oceanic proxy-based records constrain the model results. As expected, data assimilation leads to improving the consistency between model results and the reconstructions. In particular, this is achieved in a robust way in all the experiments through a strengthening of the westerlies at midlatitude that warms up northern Europe. Furthermore, the comparison of the LOVECLIM simulations with and without data assimilation has also objectively identified 16 proxy-based paleoclimate records whose reconstructed signal is either incompatible with the signal recorded by some other proxy-based records or with model physics.
Resumo:
Background: Accelerometry has been established as an objective method that can be used to assess physical activity behavior in large groups. The purpose of the current study was to provide a validated equation to translate accelerometer counts of the triaxial GT3X into energy expenditure in young children. Methods: Thirty-two children aged 5–9 years performed locomotor and play activities that are typical for their age group. Children wore a GT3X accelerometer and their energy expenditure was measured with indirect calorimetry. Twenty-one children were randomly selected to serve as development group. A cubic 2-regression model involving separate equations for locomotor and play activities was developed on the basis of model fit. It was then validated using data of the remaining children and compared with a linear 2-regression model and a linear 1-regression model. Results: All 3 regression models produced strong correlations between predicted and measured MET values. Agreement was acceptable for the cubic model and good for both linear regression approaches. Conclusions: The current linear 1-regression model provides valid estimates of energy expenditure for ActiGraph GT3X data for 5- to 9-year-old children and shows equal or better predictive validity than a cubic or a linear 2-regression model.
Resumo:
In a network of competing species, a competitive intransitivity occurs when the ranking of competitive abilities does not follow a linear hierarchy (A > B > C but C > A). A variety of mathematical models suggests that intransitive networks can prevent or slow down competitive exclusion and maintain biodiversity by enhancing species coexistence. However, it has been difficult to assess empirically the relative importance of intransitive competition because a large number of pairwise species competition experiments are needed to construct a competition matrix that is used to parameterize existing models. Here we introduce a statistical framework for evaluating the contribution of intransitivity to community structure using species abundance matrices that are commonly generated from replicated sampling of species assemblages. We provide metrics and analytical methods for using abundance matrices to estimate species competition and patch transition matrices by using reverse-engineering and a colonization-competition model. These matrices provide complementary metrics to estimate the degree of intransitivity in the competition network of the sampled communities. Benchmark tests reveal that the proposed methods could successfully detect intransitive competition networks, even in the absence of direct measures of pairwise competitive strength. To illustrate the approach, we analyzed patterns of abundance and biomass of five species of necrophagous Diptera and eight species of their hymenopteran parasitoids that co-occur in beech forests in Germany. We found evidence for a strong competitive hierarchy within communities of flies and parasitoids. However, for parasitoids, there was a tendency towards increasing intransitivity in higher weight classes, which represented larger resource patches. These tests provide novel methods for empirically estimating the degree of intransitivity in competitive networks from observational datasets. They can be applied to experimental measures of pairwise species interactions, as well as to spatio-temporal samples of assemblages in homogenous environments or environmental gradients.
Resumo:
OBJECTIVES Pre-antiretroviral therapy (ART) inflammation and coagulation activation predict clinical outcomes in HIV-positive individuals. We assessed whether pre-ART inflammatory marker levels predicted the CD4 count response to ART. METHODS Analyses were based on data from the Strategic Management of Antiretroviral Therapy (SMART) trial, an international trial evaluating continuous vs. interrupted ART, and the Flexible Initial Retrovirus Suppressive Therapies (FIRST) trial, evaluating three first-line ART regimens with at least two drug classes. For this analysis, participants had to be ART-naïve or off ART at randomization and (re)starting ART and have C-reactive protein (CRP), interleukin-6 (IL-6) and D-dimer measured pre-ART. Using random effects linear models, we assessed the association between each of the biomarker levels, categorized as quartiles, and change in CD4 count from ART initiation to 24 months post-ART. Analyses adjusted for CD4 count at ART initiation (baseline), study arm, follow-up time and other known confounders. RESULTS Overall, 1084 individuals [659 from SMART (26% ART naïve) and 425 from FIRST] met the eligibility criteria, providing 8264 CD4 count measurements. Seventy-five per cent of individuals were male with the mean age of 42 years. The median (interquartile range) baseline CD4 counts were 416 (350-530) and 100 (22-300) cells/μL in SMART and FIRST, respectively. All of the biomarkers were inversely associated with baseline CD4 count in FIRST but not in SMART. In adjusted models, there was no clear relationship between changing biomarker levels and mean change in CD4 count post-ART (P for trend: CRP, P = 0.97; IL-6, P = 0.25; and D-dimer, P = 0.29). CONCLUSIONS Pre-ART inflammation and coagulation activation do not predict CD4 count response to ART and appear to influence the risk of clinical outcomes through other mechanisms than blunting long-term CD4 count gain.
Resumo:
Sound knowledge of the spatial and temporal patterns of rockfalls is fundamental for the management of this very common hazard in mountain environments. Process-based, three-dimensional simulation models are nowadays capable of reproducing the spatial distribution of rockfall occurrences with reasonable accuracy through the simulation of numerous individual trajectories on highly-resolved digital terrain models. At the same time, however, simulation models typically fail to quantify the ‘real’ frequency of rockfalls (in terms of return intervals). The analysis of impact scars on trees, in contrast, yields real rockfall frequencies, but trees may not be present at the location of interest and rare trajectories may not necessarily be captured due to the limited age of forest stands. In this article, we demonstrate that the coupling of modeling with tree-ring techniques may overcome the limitations inherent to both approaches. Based on the analysis of 64 cells (40 m × 40 m) of a rockfall slope located above a 1631-m long road section in the Swiss Alps, we illustrate results from 488 rockfalls detected in 1260 trees. We illustrate that tree impact data cannot only be used (i) to reconstruct the real frequency of rockfalls for individual cells, but that they also serve (ii) the calibration of the rockfall model Rockyfor3D, as well as (iii) the transformation of simulated trajectories into real frequencies. Calibrated simulation results are in good agreement with real rockfall frequencies and exhibit significant differences in rockfall activity between the cells (zones) along the road section. Real frequencies, expressed as rock passages per meter road section, also enable quantification and direct comparison of the hazard potential between the zones. The contribution provides an approach for hazard zoning procedures that complements traditional methods with a quantification of rockfall frequencies in terms of return intervals through a systematic inclusion of impact records in trees.
Resumo:
The concentrations of chironomid remains in lake sediments are very variable and, therefore, chironomid stratigraphies often include samples with a low number of counts. Thus, the effect of low count sums on reconstructed temperatures is an important issue when applying chironomid‐temperature inference models. Using an existing data set, we simulated low count sums by randomly picking subsets of head capsules from surface‐sediment samples with a high number of specimens. Subsequently, a chironomid‐temperature inference model was used to assess how the inferred temperatures are affected by low counts. The simulations indicate that the variability of inferred temperatures increases progressively with decreasing count sums. At counts below 50 specimens, a further reduction in count sum can cause a disproportionate increase in the variation of inferred temperatures, whereas at higher count sums the inferences are more stable. Furthermore, low count samples may consistently infer too low or too high temperatures and, therefore, produce a systematic error in a reconstruction. Smoothing reconstructed temperatures downcore is proposed as a possible way to compensate for the high variability due to low count sums. By combining adjacent samples in a stratigraphy, to produce samples of a more reliable size, it is possible to assess if low counts cause a systematic error in inferred temperatures.
Resumo:
We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an un-binned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1 sigma for all periods suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of WIMPs to electrons is excluded at 4.8 sigma.
Resumo:
BACKGROUND Antiretroviral therapy (ART) initiation is now recommended irrespective of CD4 count. However data on the relationship between CD4 count at ART initiation and loss to follow-up (LTFU) are limited and conflicting. METHODS We conducted a cohort analysis including all adults initiating ART (2008-2012) at three public sector sites in South Africa. LTFU was defined as no visit in the 6 months before database closure. The Kaplan-Meier estimator and Cox's proportional hazards models examined the relationship between CD4 count at ART initiation and 24-month LTFU. Final models were adjusted for demographics, year of ART initiation, programme expansion and corrected for unascertained mortality. RESULTS Among 17 038 patients, the median CD4 at initiation increased from 119 (IQR 54-180) in 2008 to 257 (IQR 175-318) in 2012. In unadjusted models, observed LTFU was associated with both CD4 counts <100 cells/μL and CD4 counts ≥300 cells/μL. After adjustment, patients with CD4 counts ≥300 cells/μL were 1.35 (95% CI 1.12 to 1.63) times as likely to be LTFU after 24 months compared to those with a CD4 150-199 cells/μL. This increased risk for patients with CD4 counts ≥300 cells/μL was largest in the first 3 months on treatment. Correction for unascertained deaths attenuated the association between CD4 counts <100 cells/μL and LTFU while the association between CD4 counts ≥300 cells/μL and LTFU persisted. CONCLUSIONS Patients initiating ART at higher CD4 counts may be at increased risk for LTFU. With programmes initiating patients at higher CD4 counts, models of ART delivery need to be reoriented to support long-term retention.