96 resultados para Model-In-the-loop


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-invasive excitability studies of motor axons in patients with amyotrophic lateral sclerosis (ALS) have revealed a changing pattern of abnormal membrane properties with disease progression, but the heterogeneity of the changes has made it difficult to relate them to pathophysiology. The SOD1(G93A) mouse model of ALS displays more synchronous motoneuron pathology. Multiple excitability measures of caudal and sciatic nerves in mutant and wild-type mice were compared before onset of signs and during disease progression (4-19 weeks), and they were related to changes in muscle fiber histochemistry. Excitability differences indicated a modest membrane depolarization in SOD1(G93A) axons at about the time of symptom onset (8 weeks), possibly due to deficient energy supply. Previously described excitability changes in ALS patients, suggesting altered sodium and potassium conductances, were not seen in the mice. This suggests that those changes relate to features of the human disease that are not well represented in the animal model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Loss-of-function mutations in SCN5A, the gene encoding Na(v)1.5 Na+ channel, are associated with inherited cardiac conduction defects and Brugada syndrome, which both exhibit variable phenotypic penetrance of conduction defects. We investigated the mechanisms of this heterogeneity in a mouse model with heterozygous targeted disruption of Scn5a (Scn5a(+/-) mice) and compared our results to those obtained in patients with loss-of-function mutations in SCN5A. METHODOLOGY/PRINCIPAL FINDINGS: Based on ECG, 10-week-old Scn5a(+/-) mice were divided into 2 subgroups, one displaying severe ventricular conduction defects (QRS interval>18 ms) and one a mild phenotype (QRS< or = 18 ms; QRS in wild-type littermates: 10-18 ms). Phenotypic difference persisted with aging. At 10 weeks, the Na+ channel blocker ajmaline prolonged QRS interval similarly in both groups of Scn5a(+/-) mice. In contrast, in old mice (>53 weeks), ajmaline effect was larger in the severely affected subgroup. These data matched the clinical observations on patients with SCN5A loss-of-function mutations with either severe or mild conduction defects. Ventricular tachycardia developed in 5/10 old severely affected Scn5a(+/-) mice but not in mildly affected ones. Correspondingly, symptomatic SCN5A-mutated Brugada patients had more severe conduction defects than asymptomatic patients. Old severely affected Scn5a(+/-) mice but not mildly affected ones showed extensive cardiac fibrosis. Mildly affected Scn5a(+/-) mice had similar Na(v)1.5 mRNA but higher Na(v)1.5 protein expression, and moderately larger I(Na) current than severely affected Scn5a(+/-) mice. As a consequence, action potential upstroke velocity was more decreased in severely affected Scn5a(+/-) mice than in mildly affected ones. CONCLUSIONS: Scn5a(+/-) mice show similar phenotypic heterogeneity as SCN5A-mutated patients. In Scn5a(+/-) mice, phenotype severity correlates with wild-type Na(v)1.5 protein expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among clinically relevant somatostatin functions, agonist-induced somatostatin receptor subtype 2 (sst(2)) internalization is a potent mechanism for tumor targeting with sst(2) affine radioligands such as octreotide. Since, as opposed to octreotide, the second generation multi-somatostatin analog SOM230 (pasireotide) exhibits strong functional selectivity, it appeared of interest to evaluate its ability to affect sst(2) internalization in vivo. Rats bearing AR42J tumors endogenously expressing somatostatin sst(2) receptors were injected intravenously with SOM230 or with the [Tyr(3), Thr(8)]-octreotide (TATE) analog; they were euthanized at various time points; tumors and pancreas were analyzed by immunohistochemistry for the cellular localization of somatostatin sst(2) receptors. SOM230-induced sst(2) internalization was also evaluated in vitro by immunofluorescence microscopy in AR42J cells. At difference to the efficient in vivo sst(2) internalization triggered by intravenous [Tyr(3), Thr(8)]-octreotide, intravenous SOM230 did not elicit sst(2) internalization: immunohistochemically stained sst(2) in AR42J tumor cells and pancreatic cells were detectable at the cell surface at 2.5min, 10min, 1h, 6h, or 24h after SOM230 injection while sst(2) were found intracellularly after [Tyr(3), Thr(8)]-octreotide injection. The inability of stimulating sst(2) internalization by SOM230 was confirmed in vitro in AR42J cells by immunofluorescence microscopy. Furthermore, SOM230 was unable to antagonize agonist-induced sst(2) internalization, neither in vivo, nor in vitro. Therefore, SOM230 does not induce sst(2) internalization in vivo or in vitro in AR42J cells and pancreas, at difference to octreotide derivatives with comparable sst(2) binding affinities. These characteristics may point towards different tumor targeting but also to different desensitization properties of clinically applied SOM230.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human airway epithelium serves as structural and functional barrier against inhaled particulate antigen. Previously, we demonstrated in an in vitro epithelial barrier model that monocyte derived dendritic cells (MDDC) and monocyte derived macrophages (MDM) take up particulate antigen by building a trans-epithelial interacting network. Although the epithelial tight junction (TJ) belt was penetrated by processes of MDDC and MDM, the integrity of the epithelium was not affected. These results brought up two main questions: (1) Do MDM and MDDC exchange particles? (2) Are those cells expressing TJ proteins, which are believed to interact with the TJ belt of the epithelium to preserve the epithelial integrity? The expression of TJ and adherens junction (AJ) mRNA and proteins in MDM and MDDC monocultures was determined by RT-PCR, and immunofluorescence, respectively. Particle uptake and exchange was quantified by flow cytometry and laser scanning microscopy in co-cultures of MDM and MDDC exposed to polystyrene particles (1 μm in diameter). MDM and MDDC constantly expressed TJ and AJ mRNA and proteins. Flow cytometry analysis of MDM and MDDC co-cultures showed increased particle uptake in MDDC while MDM lost particles over time. Quantitative analysis revealed significantly higher particle uptake by MDDC in co-cultures of epithelial cells with MDM and MDDC present, compared to co-cultures containing only epithelial cells and MDDC. We conclude from these findings that MDM and MDDC express TJ and AJ proteins which could help to preserve the epithelial integrity during particle uptake and exchange across the lung epithelium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite rapid advances in the development of materials and techniques for endovascular intracranial aneurysm treatment, occlusion of large broad-neck aneurysms remains a challenge. Animal models featuring complex aneurysm architecture are needed to test endovascular innovations and train interventionalists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To demonstrate that abdominal pressure impacts venous flow and pressure characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rat double-SAH model is one of the standard models to simulate delayed cerebral vasospasm (CVS) in humans. However, the proof of delayed ischemic brain damage is missing so far. Our objective was, therefore, to determine histological changes in correlation with the development of symptomatic and perfusion weighted imaging (PWI) proven CVS in this animal model. CVS was induced by injection of autologous blood in the cisterna magna of 22 Sprague-Dawley rats. Histological changes were analyzed on day 3 and day 5. Cerebral blood flow (CBF) was assessed by PWI at 3 tesla magnetic resonance (MR) tomography. Neuronal cell count did not differ between sham operated and SAH rats in the hippocampus and the cerebral cortex on day 3. In contrast, on day 5 after SAH the neuronal cell count was significantly reduced in the hippocampus (p<0.001) and the inner cortical layer (p=0.03). The present investigation provides quantitative data on brain tissue damage in association with delayed CVS for the first time in a rat SAH model. Accordingly, our data suggest that the rat double-SAH model may be suitable to mimic delayed ischemic brain damage due to CVS and to investigate the neuroprotective effects of drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH) is a major cause of high morbidity and mortality. The reduced availability of nitric oxide (NO) in blood and cerebrospinal fluid (CSF) is well established as a key mechanism of vasospasm. Systemic administration of glyceryl trinitrate (GTN), an NO donor also known as nitroglycerin, has failed to be established in clinical settings to prevent vasospasm because of its adverse effects, particularly hypotension. The purpose of this study was to analyze the effect of intrathecally administered GTN on vasospasm after experimental SAH in the rabbit basilar artery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We hypothesized that fluid administration may increase regional splanchnic perfusion after abdominal surgery-even in the absence of a cardiac stroke volume (SV) increase and independent of accompanying endotoxemia. Sixteen anesthetized pigs underwent abdominal surgery with flow probe fitting around splanchnic vessels and carotid arteries. They were randomized to continuous placebo or endotoxin infusion, and when clinical signs of hypovolemia (mean arterial pressure, <60 mmHg; heart rate, >100 beats · min(-1); urine production, <0.5 mL · kg(-1) · h(-1); arterial lactate concentration, >2 mmol · L(-1)) and/or low pulmonary artery occlusion pressure (target 5-8 mmHg) were present, they received repeated boli of colloids (50 mL) as long as SV increased 10% or greater. Stroke volume and regional blood flows were monitored 2 min before and 30 min after fluid challenges. Of 132 fluid challenges, 45 (34%) resulted in an SV increase of 10% or greater, whereas 82 (62%) resulted in an increase of 10% or greater in one or more of the abdominal flows (P < 0.001). During blood flow redistribution, celiac trunk (19% of all measurements) and hepatic artery flow (15%) most often decreased, whereas portal vein (10%) and carotid artery (7%) flow decreased less frequently (P = 0.015, between regions). In control animals, celiac trunk (30% vs. 9%, P = 0.004) and hepatic artery (25% vs. 11%, P = 0.040) flow decreased more often than in endotoxin-infused pigs. Accordingly, blood flow redistribution is a common phenomenon in the postoperative period and is only marginally influenced by endotoxemia. Fluid management based on SV changes may not be useful for improving regional abdominal perfusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intrahepatic cholestasis of pregnancy may be complicated by fetal arrhythmia, fetal hypoxia, preterm labor, and, in severe cases, intrauterine death. The precise etiology of fetal death is not known. However, taurocholate has been demonstrated to cause arrhythmia and abnormal calcium dynamics in cardiomyocytes. To identify the underlying reason for increased susceptibility of fetal cardiomyocytes to arrhythmia, we studied myofibroblasts (MFBs), which appear during structural remodeling of the adult diseased heart. In vitro, they depolarize rat cardiomyocytes via heterocellular gap junctional coupling. Recently, it has been hypothesized that ventricular MFBs might appear in the developing human heart, triggered by physiological fetal hypoxia. However, their presence in the fetal heart (FH) and their proarrhythmogenic effects have not been systematically characterized. Immunohistochemistry demonstrated that ventricular MFBs transiently appear in the human FH during gestation. We established two in vitro models of the maternal heart (MH) and FH, both exposed to increasing doses of taurocholate. The MH model consisted of confluent strands of rat cardiomyocytes, whereas for the FH model, we added cardiac MFBs on top of cardiomyocytes. Taurocholate in the FH model, but not in the MH model, slowed conduction velocity from 19 to 9 cm/s, induced early after depolarizations, and resulted in sustained re-entrant arrhythmias. These arrhythmic events were prevented by ursodeoxycholic acid, which hyperpolarized MFB membrane potential by modulating potassium conductance. CONCLUSION: These results illustrate that the appearance of MFBs in the FH may contribute to arrhythmias. The above-described mechanism represents a new therapeutic approach for cardiac arrhythmias at the level of MFB.