45 resultados para Model basic science research
Resumo:
Each year, some two million people in the United Kingdom experience visual hallucinations. Infrequent, fleeting visual hallucinations, often around sleep, are a usual feature of life. In contrast, consistent, frequent, persistent hallucinations during waking are strongly associated with clinical disorders; in particular delirium, eye disease, psychosis, and dementia. Research interest in these disorders has driven a rapid expansion in investigatory techniques, new evidence, and explanatory models. In parallel, a move to generative models of normal visual function has resolved the theoretical tension between veridical and hallucinatory perceptions. From initial fragmented areas of investigation, the field has become increasingly coherent over the last decade. Controversies and gaps remain, but for the first time the shapes of possible unifying models are becoming clear, along with the techniques for testing these. This book provides a comprehensive survey of the neuroscience of visual hallucinations and the clinical techniques for testing these. It brings together the very latest evidence from cognitive neuropsychology, neuroimaging, neuropathology, and neuropharmacology, placing this within current models of visual perception. Leading researchers from a range of clinical and basic science areas describe visual hallucinations in their historical and scientific context, combining introductory information with up-to-date discoveries. They discuss results from the main investigatory techniques applied in a range of clinical disorders. The final section outlines future research directions investigating the potential for new understandings of veridical and hallucinatory perceptions, and for treatments of problematic hallucinations. Fully comprehensive, this is an essential reference for clinicians in the fields of the psychology and psychiatry of hallucinations, as well as for researchers in departments, research institutes and libraries. It has strong foundations in neuroscience, cognitive science, optometry, psychiatry, psychology, clinical medicine, and philosophy. With its lucid explanation and many illustrations, it is a clear resource for educators and advanced undergraduate and graduate students.
Resumo:
The fatality risk caused by avalanches on road networks can be analysed using a long-term approach, resulting in a mean value of risk, and with emphasis on short-term fluctuations due to the temporal variability of both, the hazard potential and the damage potential. In this study, the approach for analysing the long-term fatality risk has been adapted by modelling the highly variable short-term risk. The emphasis was on the temporal variability of the damage potential and the related risk peaks. For defined hazard scenarios resulting from classified amounts of snow accumulation, the fatality risk was calculated by modelling the hazard potential and observing the traffic volume. The avalanche occurrence probability was calculated using a statistical relationship between new snow height and observed avalanche releases. The number of persons at risk was determined from the recorded traffic density. The method resulted in a value for the fatality risk within the observed time frame for the studied road segment. The long-term fatality risk due to snow avalanches as well as the short-term fatality risk was compared to the average fatality risk due to traffic accidents. The application of the method had shown that the long-term avalanche risk is lower than the fatality risk due to traffic accidents. The analyses of short-term avalanche-induced fatality risk provided risk peaks that were 50 times higher than the statistical accident risk. Apart from situations with high hazard level and high traffic density, risk peaks result from both, a high hazard level combined with a low traffic density and a high traffic density combined with a low hazard level. This provided evidence for the importance of the temporal variability of the damage potential for risk simulations on road networks. The assumed dependence of the risk calculation on the sum of precipitation within three days is a simplified model. Thus, further research is needed for an improved determination of the diurnal avalanche probability. Nevertheless, the presented approach may contribute as a conceptual step towards a risk-based decision-making in risk management.
Resumo:
It was a long way from the use of hyperimmune animal sera for the treatment of toxin-producing infections to the production of polyclonal, polyspecific human immunoglobulin preparations and the use of NAbs as therapeutic tools for autoimmune and inflammatory diseases. Some highlights of the development of knowledge in blood fractionation techniques, basic science and clinical wisdom are reviewed in this chapter. Proudly we mention the outstanding contribution of Swiss scientists and clinicians in the development of IVIG as clinical tool for some otherwise untreatable diseases or taking advantage of its low adverse event profile in long-term treatment of other chronic autoimmune and inflammatory diseases. This chapter summarizes some of the characteristics and the effects in humans of NAbs which are present in IgG concentrates. We call attention to the fact that the human data remain, at least in part, incomplete, among others because even with the most efficient large-scale techniques available not more than approximately 50% of the total IgG in plasma can be fractionated into an immunoglobulin G concentrate.
Resumo:
PURPOSE: Understanding the learning styles of individuals may assist in the tailoring of an educational program to optimize learning. General surgery faculty and residents have been characterized previously as having a tendency toward particular learning styles. We seek to understand better the learning styles of general surgery residents and differences that may exist within the population. METHODS: The Kolb Learning Style Inventory was administered yearly to general surgery residents at the University of Cincinnati from 1994 to 2006. This tool allows characterization of learning styles into 4 groups: converging, accommodating, assimilating, and diverging. The converging learning style involves education by actively solving problems. The accommodating learning style uses emotion and interpersonal relationships. The assimilating learning style learns by abstract logic. The diverging learning style learns best by observation. Chi-square analysis and analysis of variance were performed to determine significance. RESULTS: Surveys from 1994 to 2006 (91 residents, 325 responses) were analyzed. The prevalent learning style was converging (185, 57%), followed by assimilating (58, 18%), accommodating (44, 14%), and diverging (38, 12%). At the PGY 1 and 2 levels, male and female residents differed in learning style, with the accommodating learning style being relatively more frequent in women and assimilating learning style more frequent in men (Table 1, p < or = 0.001, chi-square test). Interestingly, learning style did not seem to change with advancing PGY level within the program, which suggests that individual learning styles may be constant throughout residency training. If a resident's learning style changed, it tended to be to converging. In addition, no relation exists between learning style and participation in dedicated basic science training or performance on the ABSIT/SBSE. CONCLUSIONS: Our data suggests that learning style differs between male and female general surgery residents but not with PGY level or ABSIT/SBSE performance. A greater understanding of individual learning styles may allow more refinement and tailoring of surgical programs.
Resumo:
OBJECTIVES: Thrombotic thrombocytopenic purpura (TTP) was initially described as an uncommon and usually fatal disorder. With effective treatment it is more frequently diagnosed, the clinical presentations are more diverse, and long-term sequelae are becoming recognized. METHODS: Patient data are from The Oklahoma TTP-hemolytic uremic syndrome (HUS) Registry, an inception cohort of 348 consecutive patients with their first episode of clinically diagnosed TTP or HUS, 1989-2006. The Registry enrolls all patients in a defined region who are diagnosed with TTP or HUS and for whom plasma exchange treatment is requested. ADAMTS13 activity has been analyzed on 235 (93%) of 254 patients since 1995 at the University of Berne, Switzerland. Patients are described by clinical categories, related to their associated conditions and clinically apparent etiologies, and by the presence of severe ADAMTS13 deficiency. RESULTS AND CONCLUSIONS: The clinical spectrum of syndromes described as TTP is variable with multiple etiologies. Advances in clinical and laboratory investigation have provided better understanding of the pathogenesis of these syndromes, their clinical evaluation and management, and their long-term outcomes. In addition to new information about TTP, these studies provide a model for translational research to define the complete community spectrum of uncommon disorders.
Resumo:
Intracerebral hemorrhage (ICH), for which no effective treatment strategy is currently available, constitutes one of the most devastating forms of stroke. As a result, developing therapeutic options for ICH is of great interest to the medical community. The 3 potential therapies that have the most promise are cell replacement therapy, enhancing endogenous repair mechanisms, and utilizing various neuroprotective drugs. Replacement of damaged cells and restoration of function can be accomplished by transplantation of cells derived from different sources, such as embryonic or somatic stem cells, umbilical cord blood, and genetically modified cell lines. Early experimental data showing the benefits of cell transplantation on functional recovery after ICH have been promising. Nevertheless, several studies have focused on another therapeutic avenue, investigating novel ways to activate and direct endogenous repair mechanisms in the central nervous system, through exposure to specific neuronal growth factors or by inactivating inhibitory molecules. Lastly, neuroprotective drugs may offer an additional tool for improving neuronal survival in the perihematomal area. However, a number of scientific issues must be addressed before these experimental techniques can be translated into clinical therapy. In this review, the authors outline the recent advances in the basic science of treatment strategies for ICH.
Resumo:
HYPOTHESIS: Chronic rotator cuff tears are associated with irreversible architectural muscle changes and a high rate of repair failure. The changes observed in man and their irreversibility with a single stage repair can be reproduced in sheep. It was the purpose of this experiment to test the hypothesis that slow, continuous elongation of a retracted musculotendinous unit allows reversal of the currently irreversible structural muscle changes. MATERIALS AND METHODS: The infraspinatus tendon of 12 sheep was released using a greater tuberosity osteotomy and allowed to retract for 4 months. Then, a new device was mounted on the scapular spine and used to extend the infraspinatus muscuculotendinous unit transcutaneously by 1 mm per day. Thereafter, the tendon was repaired back to the greater tuberosity. We assessed the muscular architecture using magnetic resonance imaging, macroscopic dissection, histology, and electron microscopy. Fatty infiltration (in Hounsfield units 1/4 HU) and muscular cross-sectional area (in % of the control side) were monitored with computed tomography at tendon release, initiation of elongation, repair, and at sacrifice. RESULTS: Sixteen weeks after tendon release, the mean tendon retraction was 29 +/- 6 mm (14% of original length, P = .008). In 8 sheep, elongation was achieved as planned (group I), but in 4, the elongation failed technically (group II). The mean traction time was 24 +/- 6 days with a mean traction distance of 19 +/- 4 mm. At sacrifice, the mean pennation angle in the infraspinatus of group I was not different from the control side (29.8 degrees +/-7.5 degrees vs. 30 degrees +/-6 degrees , P = .575). In group II, the pennation angle had increased from 30 degrees +/-6 degrees to 55 degrees +/-14 degrees (P = .035). There was no fatty infiltration at the time of tendon release. After retraction, there was a significant increase in fatty infiltration of the infraspinatus muscle and a decrease of its cross-sectional area to 57% of the contralateral side (P = .0001). During traction, the degree of fatty infiltration remained unchanged (36 HU to 38 HU, P = .381), and atrophy improved to a muscle square area of 78% of the contralateral side (P = .0001) in group I. In group II, an increase of fatty infiltration was measured from 36 HU to 28 HU; however, this increase was not significant (P = .144). Atrophy did not change in group II (57-55%, P = .946). At sacrifice, the remaining muscle mass was 64% in group I and 46% in group II (P = .019). DISCUSSION: Our preliminary results document, that continuous elongation of a retracted, fatty infiltrated and atrophied musculotendinous unit is technically feasible. CONCLUSION: In the sheep, continuous elongation can lead to restoration of normal muscle architecture, to partial reversal of muscle atrophy, and to arrest of the progression of fatty infiltration. LEVEL OF EVIDENCE: Basic science level 2; Prospective comparative therapeutic study.
Resumo:
This article reports on recent electrical and optical techniques for investigating cellular signaling reactions in artificial and native membranes immobilized on solid supports. The first part describes the formation of planar artificial lipid bilayers on gold electrodes, which reveal giga-ohm electrical resistance and the insertion and characterization of ionotropic receptors therein. These membranes are suited to record a few or even single ion channels by impedance spectroscopy. Such tethered membranes on planar arrays of microelectrodes offer mechanically robust, long-lasting measuring devices to probe the influence of different chemistries on biologically important ionotropic receptors and therefore will have a future impact to probe the function of channel proteins in basic science and in biosensor applications. In a second part, we present complementary approaches to form inside-out native membrane sheets that are immobilized on micrometer-sized beads or across submicrometer-sized holes machined in a planar support. Because the native membrane sheets are plasma membranes detached from live cells, these approaches offer a unique possibility to investigate cellular signaling processes, such as those mediated by ionotropic or G protein-coupled receptors, with original composition of lipids and proteins.
Resumo:
Biological diversity within species can be an important driver of population and ecosystem functioning. Until now, such within-species diversity effects have been attributed to underlying variation in DNA sequence. However, within-species differences, and thus potentially functional biodiversity, can also be created by epigenetic variation. Here, we show that epigenetic diversity increases the productivity and stability of plant populations. Epigenetically diverse populations of Arabidopsis thaliana produce up to 40% more biomass than epigenetically uniform populations. The positive epigenetic diversity effects are strongest when populations are grown together with competitors and infected with pathogens, and they seem to be partly driven by complementarity among epigenotypes. Our study has two implications: first, we may need to re-evaluate previous within-species diversity studies where some effects could reflect epigenetic diversity; second, we need to incorporate epigenetics into basic ecological research, by quantifying natural epigenetic diversity and testing for its ecological consequences across many different species.
Tenocytes of chronic rotator cuff tendon tears can be stimulated by platelet-released growth factors
Resumo:
BACKGROUND Bone-to-tendon healing after rotator cuff repairs is mainly impaired by poor tissue quality. The tenocytes of chronic rotator cuff tendon tears are not able to synthesize normal fibrocartilaginous extracellular matrix (ECM). We hypothesized that in the presence of platelet-released growth factors (PRGF), tenocytes from chronically retracted rotator cuff tendons proliferate and synthesize the appropriate ECM proteins. MATERIALS AND METHODS Tenocytes from 8 patients with chronic rotator cuff tears were cultured for 4 weeks in 2 different media: standard medium (Iscove's Modified Dulbecco's Media + 10% fetal calf serum + 1% nonessential amino acids + 0.5 μg/mL ascorbic acid) and media with an additional 10% PRGF. Cell proliferation was assessed at 7, 14, 21, and 28 days. Messenger (m)RNA levels of collagens I, II, and X, decorin, biglycan, and aggrecan were analyzed using real time reverse-transcription polymerase chain reaction. Immunocytochemistry was also performed. RESULTS The proliferation rate of tenocytes was significantly higher at all time points when cultured with PRGF. At 21 days, the mRNA levels for collagens I, II, and X, decorin, aggrecan, and biglycan were significantly higher in the PRGF group. The mRNA data were confirmed at protein level by immunocytochemistry. CONCLUSIONS PRGFs enhance tenocyte proliferation in vitro and promote synthesis of ECM to levels similar to those found with insertion of the normal human rotator cuffs. CLINICAL RELEVANCE Biologic augmentation of repaired rotator cuffs with PRGF may enhance the properties of the repair tissue. However, further studies are needed to determine if application of PRGF remains safe and effective in long-term clinical studies. LEVEL OF EVIDENCE Basic Science Study, Cell Biology.