84 resultados para Modal Correction
Resumo:
A new physics-based technique for correcting inhomogeneities present in sub-daily temperature records is proposed. The approach accounts for changes in the sensor-shield characteristics that affect the energy balance dependent on ambient weather conditions (radiation, wind). An empirical model is formulated that reflects the main atmospheric processes and can be used in the correction step of a homogenization procedure. The model accounts for short- and long-wave radiation fluxes (including a snow cover component for albedo calculation) of a measurement system, such as a radiation shield. One part of the flux is further modulated by ventilation. The model requires only cloud cover and wind speed for each day, but detailed site-specific information is necessary. The final model has three free parameters, one of which is a constant offset. The three parameters can be determined, e.g., using the mean offsets for three observation times. The model is developed using the example of the change from the Wild screen to the Stevenson screen in the temperature record of Basel, Switzerland, in 1966. It is evaluated based on parallel measurements of both systems during a sub-period at this location, which were discovered during the writing of this paper. The model can be used in the correction step of homogenization to distribute a known mean step-size to every single measurement, thus providing a reasonable alternative correction procedure for high-resolution historical climate series. It also constitutes an error model, which may be applied, e.g., in data assimilation approaches.
Resumo:
This is a retrospective clinical, radiological and patient outcome assessment of 21 consecutive patients with King 1 idiopathic adolescent scoliosis treated by short anterior selective fusion of the major thoracolumbar/lumbar (TL/L) curve. Three-dimensional changes of both curves, changes in trunk balance and rib hump were evaluated. The minimal follow-up was 24 months (max. 83). The Cobb angle of the TL/L curve was 52 degrees (45-67 degrees) with a flexibility of 72% (40-100%). The average length of the main curve was 5 (3-8) segments. An average of 3 (2-4) segments was fused using rigid single rod implants with side-loading screws. The Cobb angle of the thoracic curve was 33 degrees (18-50 degrees) with a flexibility of 69% (29-100%). The thoracic curve in bending was less than 20 degrees in 17 patients, and 20-25 degrees in 4 patients. In the TL/L curve there was an improvement of the Cobb angle of 67%, of the apex vertebral rotation of 51% and of the apex vertebral translation of 74%. The Cobb angle of the thoracic curve improved 29% spontaneously. Shoulder balance improved significantly from an average preoperative imbalance of 14.5-3.1 mm at the last follow-up. Seventy-five percent of the patients with preoperative positive shoulder imbalance (higher on the side of the thoracic curve) had levelled shoulders at the last follow-up. C7 offset improved from a preoperative 19.8 (0-40) to 4.8 (0-18) mm at the last follow-up. There were no significant changes in rotation, translation of the thoracic curve and the clinical rib hump. There were no significant changes in thoracic kyphosis or lumbar lordosis. The average score of the SRS-24 questionnaire at the last follow-up was 91 points (max. 120). We conclude that short anterior selective fusion of the TL/L curve in King 1 scoliosis with a thoracic curve bending to 25 degrees or less (Type 5 according to Lenke classification) results in a satisfactory correction and a balanced spine. Short fusions leave enough mobile lumbar segments for the establishment of global spinal balance. A positive shoulder imbalance is not a contraindication for this procedure. Structural interbody grafts are not necessary to maintain lumbar lordosis.
Resumo:
BACKGROUND: Assessment of lung volume (FRC) and ventilation inhomogeneities with ultrasonic flowmeter and multiple breath washout (MBW) has been used to provide important information about lung disease in infants. Sub-optimal adjustment of the mainstream molar mass (MM) signal for temperature and external deadspace may lead to analysis errors in infants with critically small tidal volume changes during breathing. METHODS: We measured expiratory temperature in human infants at 5 weeks of age and examined the influence of temperature and deadspace changes on FRC results with computer simulation modeling. A new analysis method with optimized temperature and deadspace settings was then derived, tested for robustness to analysis errors and compared with the previously used analysis methods. RESULTS: Temperature in the facemask was higher and variations of deadspace volumes larger than previously assumed. Both showed considerable impact upon FRC and LCI results with high variability when obtained with the previously used analysis model. Using the measured temperature we optimized model parameters and tested a newly derived analysis method, which was found to be more robust to variations in deadspace. Comparison between both analysis methods showed systematic differences and a wide scatter. CONCLUSION: Corrected deadspace and more realistic temperature assumptions improved the stability of the analysis of MM measurements obtained by ultrasonic flowmeter in infants. This new analysis method using the only currently available commercial ultrasonic flowmeter in infants may help to improve stability of the analysis and further facilitate assessment of lung volume and ventilation inhomogeneities in infants.
Resumo:
The purpose of this study was to assess the performance of a new motion correction algorithm. Twenty-five dynamic MR mammography (MRM) data sets and 25 contrast-enhanced three-dimensional peripheral MR angiographic (MRA) data sets which were affected by patient motion of varying severeness were selected retrospectively from routine examinations. Anonymized data were registered by a new experimental elastic motion correction algorithm. The algorithm works by computing a similarity measure for the two volumes that takes into account expected signal changes due to the presence of a contrast agent while penalizing other signal changes caused by patient motion. A conjugate gradient method is used to find the best possible set of motion parameters that maximizes the similarity measures across the entire volume. Images before and after correction were visually evaluated and scored by experienced radiologists with respect to reduction of motion, improvement of image quality, disappearance of existing lesions or creation of artifactual lesions. It was found that the correction improves image quality (76% for MRM and 96% for MRA) and diagnosability (60% for MRM and 96% for MRA).