45 resultados para Mixing degree
Resumo:
This work presents a new, field-deployable technique for continuous, high-resolution measurements of methane mixing ratios from ice cores. The technique is based on a continuous flow analysis system, where ice core samples cut along the long axis of an ice core are melted continuously. The past atmospheric air contained in the ice is separated from the melt water stream via a system for continuous gas extraction. The extracted gas is dehumidified and then analyzed by a Wavelength Scanned-Cavity Ring Down Spectrometer for methane mixing ratios. We assess the performance of the new measurement technique in terms of precision (±0.8 ppbv, 1σ), accuracy (±8 ppbv), temporal (ca. 100 s), and spatial resolution (ca. 5 cm). Using a firn air transport model, we compare the resolution of the measurement technique to the resolution of the atmospheric methane signal as preserved in ice cores in Greenland. We conclude that our measurement technique can resolve all climatically relevant variations as preserved in the ice down to an ice depth of at least 1980 m (66 000 yr before present) in the North Greenland Eemian Ice Drilling ice core. Furthermore, we describe the modifications, which are necessary to make a commercially available spectrometer suitable for continuous methane mixing ratio measurements from ice cores.
Resumo:
Background and Aim In patients with cystic fibrosis (CF) the architecture of the developing lungs and the ventilation of lung units are progressively affected, influencing intrapulmonary gas mixing and gas exchange. We examined the long-term course of blood gas measurements in relation to characteristics of lung function and the influence of different CFTR genotype upon this process. Methods Serial annual measurements of PaO2 and PaCO2 assessed in relation to lung function, providing functional residual capacity (FRCpleth), lung clearance index (LCI), trapped gas (VTG), airway resistance (sReff), and forced expiratory indices (FEV1, FEF50), were collected in 178 children (88 males; 90 females) with CF, over an age range of 5 to 18 years. Linear mixed model analysis and binary logistic regression analysis were used to define predominant lung function parameters influencing oxygenation and carbon dioxide elimination. Results PaO2 decreased linearly from age 5 to 18 years, and was mainly associated with FRCpleth, (p < 0.0001), FEV1 (p < 0.001), FEF50 (p < 0.002), and LCI (p < 0.002), indicating that oxygenation was associated with the degree of pulmonary hyperinflation, ventilation inhomogeneities and impeded airway function. PaCO2 showed a transitory phase of low PaCO2 values, mainly during the age range of 5 to 12 years. Both PaO2 and PaCO2 presented with different progression slopes within specific CFTR genotypes. Conclusion In the long-term evaluation of gas exchange characteristics, an association with different lung function patterns was found and was closely related to specific genotypes. Early examination of blood gases may reveal hypocarbia, presumably reflecting compensatory mechanisms to improve oxygenation.
Resumo:
Objectives The aim of this study was to measure the degree of conversion (DC) of five dual-curing resin cements after different curing modes with a second- and a third-generation light-emitting diode (LED) curing unit. Additionally, irradiance of both light curing units was measured at increasing distances and through discs of two glass ceramics for computer-aided design/manufacturing (CAD/CAM). Materials and methods Irradiance and spectra of the Elipar FreeLight 2 (Standard Mode (SM)) and of the VALO light curing unit (High Power Mode (HPM) and Xtra Power Mode (XPM)) were measured with a MARC radiometer. Irradiance was measured at increasing distances (control) and through discs (1.5 to 6 mm thickness) of IPS Empress CAD and IPS e.max CAD. DC of Panavia F2.0, RelyX Unicem 2 Automix, SpeedCEM, BisCem, and BeautiCem SA was measured with an attenuated total reflectance–Fourier transform infrared spectrometer when self-cured (negative control) or light cured in SM for 40 s, HPM for 32 s, or XPM for 18 s. Light curing was performed directly (positive control) or through discs of either 1.5- or 3-mm thickness of IPS Empress CAD or IPS e.max CAD. DC was analysed with Kruskal–Wallis tests followed by pairwise Wilcoxon rank sum tests (α = 0.05). Results Maximum irradiances were 1,545 mW/cm2 (SM), 2,179 mW/cm2 (HPM), and 4,156 mW/cm2 (XPM), and all irradiances decreased by >80 % through discs of 1.5 mm, ≥95 % through 3 mm, and up to >99 % through 6 mm. Generally, self-curing resulted in the lowest DC. For some cements, direct light curing did not result in higher DC compared to when light cured through ceramic discs. For other cements, light curing through ceramic discs of 3 mm generally reduced DC. Conclusions Light curing was favourable for dual-curing cements. Some cements were more susceptible to variations in curing mode than others. Clinical relevance When light curing a given cement, the higher irradiances of the third-generation LED curing unit resulted in similar DC compared to the second-generation one, though at shorter light curing times.
Resumo:
The situation once described by Hoffmann (1985), in which children grow up exposed to three languages from an early age, is a reality for an increasing number of families. In Europe – as elsewhere – greater mobility is leading to greater numbers of mixed-language couples (Piller 2002), and, by extension, multilingual families. For such families, questions concerning the acquisition and maintenance of three or more languages in a natural environment are of direct relevance. Researchers in bilingualism have already pointed out the importance of social context for the acquisition of two languages in childhood, focusing in particular on the quantity and quality of exposure to the languages (De Houwer 1990; Döpke 1992; Okita 2002; Lanza 2004) or the prestige of the languages (Lambert 1977). In this paper, I will make use of the insights gained by such researchers and test them in a trilingual setting. The paper will focus mainly on one aspect, namely the conversational style of parents and caretakers. The data come from research being carried out in Switzerland and consist of 33 interviews with multilingual families, as well as case studies of two trilingual children. The findings attest to the importance of conversational style, but at the same time indicate that a number of further factors are also of great significance.
Resumo:
In the framework of the International Partnerships in Ice Core Sciences, one of the most important targets is to retrieve an Antarctic ice core that extends over the last 1.5 million years (i.e. an ice core that enters the climate era when glacial–interglacial cycles followed the obliquity cycles of the earth). In such an ice core the annual layers of the oldest ice would be thinned by a factor of about 100 and the climatic information of a 10 000 yr interval would be contained in less than 1 m of ice. The gas record in such an Antarctic ice core can potentially reveal the role of greenhouse gas forcing on these 40 000 yr cycles. However, besides the extreme thinning of the annual layers, also the long residence time of the trapped air in the ice and the relatively high ice temperatures near the bedrock favour diffusive exchanges. To investigate the changes in the O2 / N2 ratio, as well as the trapped CO2 concentrations, we modelled the diffusive exchange of the trapped gases O2, N2 and CO2 along the vertical axis. However, the boundary conditions of a potential drilling site are not yet well constrained and the uncertainties in the permeation coefficients of the air constituents in the ice are large. In our simulations, we have set the drill site ice thickness at 2700 m and the bedrock ice temperature at 5–10 K below the ice pressure melting point. Using these conditions and including all further uncertainties associated with the drill site and the permeation coefficients, the results suggest that in the oldest ice the precessional variations in the O2 / N2 ratio will be damped by 50–100%, whereas CO2 concentration changes associated with glacial–interglacial variations will likely be conserved (simulated damping 5%). If the precessional O2 / N2 signal will have disappeared completely in this future ice core, orbital tuning of the ice-core age scale will be limited.
Resumo:
In many field or laboratory situations, well-mixed reservoirs like, for instance, injection or detection wells and gas distribution or sampling chambers define boundaries of transport domains. Exchange of solutes or gases across such boundaries can occur through advective or diffusive processes. First we analyzed situations, where the inlet region consists of a well-mixed reservoir, in a systematic way by interpreting them in terms of injection type. Second, we discussed the mass balance errors that seem to appear in case of resident injections. Mixing cells (MC) can be coupled mathematically in different ways to a domain where advective-dispersive transport occurs: by assuming a continuous solute flux at the interface (flux injection, MC-FI), or by assuming a continuous resident concentration (resident injection). In the latter case, the flux leaving the mixing cell can be defined in two ways: either as the value when the interface is approached from the mixing-cell side (MC-RT -), or as the value when it is approached from the column side (MC-RT +). Solutions of these injection types with constant or-in one case-distance-dependent transport parameters were compared to each other as well as to a solution of a two-layer system, where the first layer was characterized by a large dispersion coefficient. These solutions differ mainly at small Peclet numbers. For most real situations, the model for resident injection MC-RI + is considered to be relevant. This type of injection was modeled with a constant or with an exponentially varying dispersion coefficient within the porous medium. A constant dispersion coefficient will be appropriate for gases because of the Eulerian nature of the usually dominating gaseous diffusion coefficient, whereas the asymptotically growing dispersion coefficient will be more appropriate for solutes due to the Lagrangian nature of mechanical dispersion, which evolves only with the fluid flow. Assuming a continuous resident concentration at the interface between a mixing cell and a column, as in case of the MC-RI + model, entails a flux discontinuity. This flux discontinuity arises inherently from the definition of a mixing cell: the mixing process is included in the balance equation, but does not appear in the description of the flux through the mixing cell. There, only convection appears because of the homogeneous concentration within the mixing cell. Thus, the solute flux through a mixing cell in close contact with a transport domain is generally underestimated. This leads to (apparent) mass balance errors, which are often reported for similar situations and erroneously used to judge the validity of such models. Finally, the mixing cell model MC-RI + defines a universal basis regarding the type of solute injection at a boundary. Depending on the mixing cell parameters, it represents, in its limits, flux as well as resident injections. (C) 1998 Elsevier Science B.V. All rights reserved.