57 resultados para Mini-plates
Resumo:
To estimate the applicability of potential sites for insertion of orthodontic mini-implants (OMIs) by a systematic review of studies that used computed tomography (CT) or cone beam CT to evaluate anatomical bone quality and quantity parameters, such as bone thickness, available space, and bone density.
Resumo:
In this paper we present a new population-based implant design methodology, which advances the state-of-the-art approaches by combining shape and bone quality information into the design strategy. The method enhances the mechanical stability of the fixation and reduces the intra-operative in-plane bending which might impede the functionality of the locking mechanism. The method is presented for the case of mandibular locking fixation plates, where the mandibular angle and the bone quality at screw locations are taken into account. Using computational anatomy techniques, the method automatically derives, from a set of computed tomography images, the mandibular angle and the bone thickness and intensity values at the path of every screw. An optimisation strategy is then used to optimise the two parameters of plate angle and screw position. Results for the new design are presented along with a comparison with a commercially available mandibular locking fixation plate. A statistically highly significant improvement was observed. Our experiments allowed us to conclude that an angle of 126° and a screw separation of 8mm is a more suitable design than the standard 120° and 9mm.
Resumo:
Betel quid (BQ) and areca nut chewing is widely prevalent in many parts of Asia and Asian-migrant communities throughout the world. Global reports estimate 600 million users. Sufficient evidence of carcinogenicity has been found for BQ and its main ingredient, areca nut. BQ areca nut users have an increased risk of potentially malignant disorders. Among chewers, BQ remains in contact with the oral mucosa for prolonged periods. This review examines the clinical and pathological aspects of lichenoid lesions caused by areca nut and BQ, a condition that has received little attention in the published literature.
Resumo:
The progress in molecular genetics in animal breeding is moderately effective as compared to traditional animal breeding using quantitative genetic approaches. There is an extensive disparity between the number of reported quantitative trait loci (QTLs) and their linked genetic variations in cattle, pig, and chicken. The identification of causative mutations affecting quantitative traits is still very challenging and hampered by the cloudy relationship between genotype and phenotype. There are relatively few reports in which a successful identification of a causative mutation for an animal production trait was demonstrated. The examples that have attracted considerable attention from the animal breeding community are briefly summarized and presented in a table. In this mini-review, the recent progress in mapping quantitative trait nucleotides (QTNs) are reviewed, including the ABCG2 gene mutation that underlies a QTL for fat and protein content and the ovine MSTN gene mutation that causes muscular hypertrophy in Texel sheep. It is concluded that the progress in molecular genetics might facilitate the elucidation of the genetic architecture of QTLs, so that also the high-hanging fruits can be harvested in order to contribute to efficient and sustainable animal production.
Resumo:
In this paper we present a new population-based implant design methodology, which advances the state-of-the-art approaches by combining shape and bone quality information into the design strategy. The method may enhance the mechanical stability of the fixation and reduces the intra-operative in-plane bending which might impede the functionality of the locking mechanism. The computational method is presented for the case of mandibular locking fixation plates, where the mandibular angle and the bone quality at screw locations are taken into account. The method automatically derives the mandibular angle and the bone thickness and intensity values at the path of every screw from a set of computed tomography images. An optimization strategy is then used to optimize the two parameters of plate angle and screw position. The method was applied to two populations of different genders. Results for the new design are presented along with a comparison with a commercially available mandibular locking fixation plate (MODUS(®) TriLock(®) 2.0/2.3/2.5, Medartis AG, Basel, Switzerland). The proposed designs resulted in a statistically significant improvement in the available bone thickness when compared to the standard plate. There is a higher probability that the proposed implants cover areas of thicker cortical bone without compromising the bone mineral density around the screws. The obtained results allowed us to conclude that an angle and screw separation of 129° and 9 mm for females and 121° and 10 mm for males are more suitable designs than the commercially available 120° and 9 mm.
Resumo:
OBJECTIVES: The aim of the here described case series was to develop and evaluate the minimally invasive percutaneous osteosynthesis for the plate fixation of tibial fractures in dogs and cats. METHODS: Six dogs and four cats with shaft fractures of the tibia were treated using minimally invasive percutaneous osteosynthesis. Follow-up radiographs four to six weeks after fracture fixation were evaluated for fracture healing. For the long-term follow-up (minimum 2.4 years), owners were contacted by phone to complete a questionnaire. RESULTS: All fractures healed without the need for a second procedure. Follow-up radiographs obtained after four to six weeks in seven cases showed advanced bony healing with callus formation and filling of the fracture gaps with calcified tissue in all seven. All the patients had a good to excellent long-term result with full limb function. The time needed for regaining full limb use was two to three months. CLINICAL SIGNIFICANCE: Minimally invasive percutaneous osteosynthesis seems to be a useful technique for the treatment of tibial shaft fractures in dogs and cats.
Resumo:
The Growth/Differentiation Factors (GDFs) are a subgroup of the Bone Morphogenetic Proteins (BMPs) well known for their role in joint formation and chondrogenesis. Mice deficient in one of these signaling molecules, GDF-5, have recently been shown to exhibit a decreased rate of endochondral bone growth in the proximal tibia due to a significantly longer hypertrophic phase duration. GDF-7 is a related family member, which exhibits a high degree of sequence identity with GDF-5. The purpose of the present study was to determine whether GDF-7 deficiency also alters the endochondral bone growth rate in mice and, if so, how this is achieved. Stereologic and cell kinetic parameters in proximal tibial growth plates from 5-week-old female GDF-7 -/- mice and wild type control littermates were examined. GDF-7 deficiency resulted in a statistically significant increase in growth rate (+26%; p = 0.0084) and rate of cell loss at the chondrosseous junction (+25%; p = 0.0217). Cells from GDF-7 deficient mice also exhibited a significantly shorter hypertrophic phase duration compared to wild type controls (-27%; p = 0.0326). These data demonstrate that, in the absence of GDF-7, the rate of endochondral bone growth is affected through the modulation of hypertrophic phase duration in growth plate chondrocytes. These findings further support a growing body of evidence implicating the GDFs in the formation, maturation, and maintenance of healthy cartilage.
Resumo:
BACKGROUND: Long-term results after partial, extended, or complete resection of lateral discoid meniscus in children revealed knee arthritis. The purpose of this study was to evaluate whether the operative approach, arthrotomy or arthroscopy, has an impact on the outcome and the development of arthritis. METHODS: A retrospective comparison of 2 well matching groups totaling 40 children with symptomatic lateral discoid meniscus (48 knees, mean age 8.9 years, 13 male and 27 female patients). Meniscus resection was performed via mini-arthrotomy in group 1 (n=17 patients, 20 knees) and arthroscopically in group 2 (n=23 patients, 28 knees). RESULTS: In the follow-up (mean 57 months in group 1, 62 months in group 2), functional results indicated a trend to better results in the International Knee Documentation Committee score (P=0.12) and in the Lysholm score for group 1 (P=0.13) but not in the Ikeuchi score (P=0.48). The comparison of the radiographic arthritis grading in the follow-up showed no significant arthritis in either group (P=0.22). The overall complication rate was similar in both groups (2/20, 10% in group 1; 3/28, 12% in group 2). CONCLUSIONS: Most likely because of the appropriate visualization of the children's joint and the easier instrumentation, the mini-arthrotomy led to slightly superior results compared with those after arthroscopic resection regarding functional outcome and 5 years after surgery. We can recommend the mini-arthrotomy for the resection of lateral discoid meniscus particularly in young children with narrow joint spaces and for surgeons that are not familiar with arthroscopies of small joints. LEVEL OF EVIDENCE: III (therapeutic study, case series with control group).
Resumo:
The growth/differentiation factors (GDFs) are a subgroup of the bone morphogenetic proteins best known for their role in joint formation and chondrogenesis. Mice deficient in one of these signaling proteins, GDF-5, exhibit numerous skeletal abnormalities, including shortened limb bones. The primary aim of this study was determine whether GDF-5 deficiency would alter the growth rate in growth plates from the long bones in mice and, if so, how this is achieved. Stereologic and cell kinetic parameters in proximal tibial growth plates from 5-week-old female GDF-5 -/- mice and control littermates were examined. GDF-5 deficiency resulted in a statistically significant reduction in growth rate (-14%, p=0.03). The effect of genotype on growth rate was associated with an altered hypertrophic phase duration, with hypertrophic cells from GDF-5 deficient mice exhibiting a significantly longer phase duration compared to control littermates (+25%, p=0.006). These data suggest that one way in which GDF-5 might modulate the rate of endochondral bone growth could be by affecting the duration of the hypertrophic phase in growth plate chondrocytes.