26 resultados para Met
Resumo:
The receptor tyrosine kinase MET is a prime target in clinical oncology due to its aberrant activation and involvement in the pathogenesis of a broad spectrum of malignancies. Similar to other targeted kinases, primary and secondary mutations seem to represent an important resistance mechanism to MET inhibitors. Here, we report the biologic activity of a novel MET inhibitor, EMD1214063, on cells that ectopically express the mutated MET variants M1268T, Y1248H, H1112Y, L1213V, H1112L, V1110I, V1206L, and V1238I. Our results demonstrate a dose-dependent decrease in MET autophosphorylation in response to EMD1214063 in five out of the eight cell lines (IC50 2-43nM). Blockade of MET by EMD1214063 was accompanied by a reduced activation of downstream effectors in cells expressing EMD1214063-sensitive mutants. In all sensitive mutant-expressing lines, EMD1214063 altered cell cycle distribution, primarily with an increase in G1 phase. EMD1214063 strongly influenced MET-driven biological functions, such as cellular morphology, MET-dependent cell motility and anchorage-independent growth. To assess the in vivo efficacy of EMD1214063, we used a xenograft tumor model in immunocompromised mice bearing NIH3T3 cells expressing sensitive and resistant MET mutated variants. Animals were randomized for the treatment with EMD1214063 (50mg/kg/day) or vehicle only. Remarkably, five days of EMD1214063 treatment resulted in a complete regression of the sensitive H1112L-derived tumors, while tumor growth remained unaffected in mice with L1213V tumors and in vehicle-treated animals. Collectively, the current data identifies EMD1214063 as a potent MET small molecule inhibitor with selective activity towards mutated MET variants.
Resumo:
Radiation therapy remains an imperative treatment modality for numerous malignancies. Enduring significant technical achievements both on the levels of treatment planning and radiation delivery have led to improvements in local control of tumor growth and reduction in healthy tissue toxicity. Nevertheless, resistance mechanisms, which presumably also involve activation of DNA damage response signaling pathways that eventually may account for loco-regional relapse and consequent tumor progression, still remain a critical problem. Accumulating data suggest that signaling via growth factor receptor tyrosine kinases, which are aberrantly expressed in many tumors, may interfere with the cytotoxic impact of ionizing radiation via the direct activation of the DNA damage response, leading eventually to so-called tumor radioresistance. The aim of this review is to overview the current known data that support a molecular crosstalk between the hepatocyte growth factor receptor tyrosine kinase MET and the DNA damage response. Apart of extending well established concepts over MET biology beyond its function as a growth factor receptor, these observations directly relate to the role of its aberrant activity in resistance to DNA damaging agents, such as ionizing radiation, which are routinely used in cancer therapy and advocate tumor sensitization towards DNA damaging agents in combination with MET targeting.
Resumo:
MET, also known as hepatocyte growth factor receptor (HGFR), is a receptor tyrosine kinase with an important role, both in normal cellular function as well as in oncogenesis. In many cancer types, abnormal activation of MET is related to poor prognosis and various strategies to inhibit its function, including small molecule inhibitors, are currently in preclinical and clinical evaluation. Autophagy, a self-digesting recycling mechanism with cytoprotective functions, is induced by cellular stress. This process is also induced upon cytotoxic drug treatment of cancer cells and partially allows these cells to escape cell death. Thus, since autophagy protects different tumor cells from chemotherapy-induced cell death, current clinical trials aim at combining autophagy inhibitors with different cancer treatments. We found that in a gastric adenocarcinoma cell line GTL-16, where MET activity is deregulated due to receptor overexpression, two different MET inhibitors PHA665752 and EMD1214063 lead to cell death paralleled by the induction of autophagy. A combined treatment of MET inhibitors together with the autophagy inhibitor 3-MA or genetically impairing autophagy by knocking down the key autophagy gene ATG7 further decreased cell viability of gastric cancer cells. In general, we observed the induction of cytoprotective autophagy in MET expressing cells upon MET inhibition and a combination of MET and autophagy inhibition resulted in significantly decreased cell viability in gastric cancer cells.
Resumo:
ABSTRACT Aims: ID1 is an important component of the MET-SRC signaling pathway, which is a regulator of cell migration and invasion. We hypothesized that the ALK/MET inhibitor crizotinib inhibits migration via MET-SRC-ID1, rather than ALK. Materials & methods: We used ALK fusion-positive and -negative lung cancer cell lines; crizotinib, PHA-665752, and saracatinib, and stable transfection with shMET. We performed western blotting for p-ALK, ALK, p-MET, MET, p-SRC, SRC and ID1, and quantitative real-time PCR for ID1. Results: Crizotinib decreased p-MET, p-SRC and ID1 levels in ALK- and or MET-positive cell lines and inhibited cell migration. Knockdown of MET was comparable with the effect of crizotinib. Conclusion: The effects of crizotinib on ID1 expression and cancer cell migration were associated with the presence of activated MET, rather than ALK fusion.
Resumo:
Head and neck cancer constitutes the 6th most common malignancy worldwide and affects the crucial anatomical structures and physiological functions of the upper aerodigestive tract. Classical therapeutic strategies such as surgery and radiotherapy carry substantial toxicity and functional impairment. Moreover, the loco-regional control rates as well as overall survival still need to be improved in subgroups of patients. The scatter-factor/hepatocyte growth factor receptor tyrosine kinase MET is an established effector in the promotion, maintenance and progression of malignant transformation in a wide range of human malignancies, and has been gaining considerable interest in head and neck cancer over the last 15 years. Aberrant MET activation due to overexpression, mutations, tumor-stroma paracrine loops, and cooperative/redundant signaling has been shown to play prominent roles in epithelial-to-mesenchymal transition, angiogenesis, and responses to anti-cancer therapeutic modalities. Accumulating preclinical and translational evidence highly supports the increasing interest of MET as a biomarker for lymph node and distant metastases, as well as a potential marker of stratification for responses to ionizing radiation. The relevance of MET as a therapeutic molecular target in head and neck cancer described in preclinical studies remains largely under-evaluated in clinical trials, and therefore inconclusive. Also in the context of anti-cancer targeted therapy, a large body of preclinical data suggests a central role for MET in treatment resistance towards multiple therapeutic modalities in malignancies of the head and neck region. These findings, as well as the potential use of combination therapies including MET inhibitors in these tumors, need to be further explored.
Resumo:
The MET receptor tyrosine kinase is deregulated primarily via overexpression or point mutations in various human cancers and different strategies for MET inhibition are currently evaluated in clinical trials. We observed by Western blot analysis and by Flow cytometry that MET inhibition by different MET small molecule inhibitors surprisingly increases in a dose-dependent manner total MET levels in treated cells. Mechanistically, this inhibition-related MET accumulation was associated with reduced Tyr1003 phosphorylation and MET physical association with the CBL ubiquitin ligase with concomitant decrease in MET ubiquitination. These data may suggest careful consideration for design of anti-MET clinical protocols.
Resumo:
Signaling via the MET receptor tyrosine kinase has been implicated in crosstalk with cellular responses to DNA damage. Our group previously demonstrated that MET inhibition in tumor cells with deregulated MET activity results in radiosensitization via downregulation of the ATR-CHK1-CDC25 pathway, a major signaling cascade responsible for intra-S and G2/M cell cycle arrest following DNA damage. Here we aimed at studying the potential therapeutic application of ionizing radiation in combination with a MET inhibitor, EMD-1214063, in p53-deficient cancer cells that harbor impaired G1/S checkpoint regulation upon DNA damage. We hypothesized that upon MET inhibition, p53-deficient cells would bypass both G1/S and G2/M checkpoints, promoting premature mitotic entry with substantial DNA lesions and cell death in a greater extent than p53-proficient cells. Our data suggest that p53-deficient cells are more susceptible to EMD-1214063 and combined treatment with irradiation than wildtype p53 lines as inferred from elevated γH2AX expression and increased cytotoxicity. Furthermore, cell cycle distribution profiling indicates constantly lower G1 and higher G2/M population as well as higher expression of a mitotic marker p-histone H3 following the dual treatment in p53 knockdown isogenic variant, compared to the parental counterpart. IMPLICATIONS The concept of MET inhibition-mediated radiosensitization enhanced by p53 deficiency is of high clinical relevance, since p53 is frequently mutated in numerous types of human cancer. The current data point for a therapeutic advantage for an approach combining MET targeting along with DNA damaging agents for MET positive/p53 negative tumors.
Resumo:
The MET receptor tyrosine kinase is often deregulated in human cancers and several MET inhibitors are evaluated in clinical trials. Similarly to EGFR, MET signals through the RAS-RAF-ERK/MAPK pathway which plays key roles in cell proliferation and survival. Mutations of genes encoding for RAS proteins, particularly in KRAS, are commonly found in various tumors and are associated with constitutive activation of the MAPK pathway. It was shown for EGFR, that KRAS mutations render upstream EGFR inhibition ineffective in EGFR-positive colorectal cancers. Currently, there are no clinical studies evaluating MET inhibition impairment due to RAS mutations. To test the impact of RAS mutations on MET targeting, we generated tumor cells responsive to the MET inhibitor EMD1214063 that express KRAS G12V, G12D, G13D and HRAS G12V variants. We demonstrate that these MAPK-activating RAS mutations differentially interfere with MET-mediated biological effects of MET inhibition. We report increased residual ERK1/2 phosphorylation indicating that the downstream pathway remains active in presence of MET inhibition. Consequently, RAS variants counteracted MET inhibition-induced morphological changes as well as anti-proliferative and anchorage-independent growth effects. The effect of RAS mutants was reversed when MET inhibition was combined with MEK inhibitors AZD6244 and UO126. In an in vivo mouse xenograft model, MET-driven tumors harboring mutated RAS displayed resistance to MET inhibition. Taken together, our results demonstrate for the first time in details the role of KRAS and HRAS mutations in resistance to MET inhibition and suggest targeting both MET and MEK as an effective strategy when both oncogenic drivers are expressed.
Resumo:
Deregulated expression of the MET receptor tyrosine kinase has been reported in up to 50% of patients with hepatocellular carcinoma, the most abundant form of liver cancers, and is associated with decreased survival. Consequently, MET is considered as a molecular target in this malignancy, whose progression is highly dependent on extensive angiogenesis. Here we studied the impact of MET small molecule inhibitors on angiogenesis-associated parameters and growth of xenograft liver models consisting of cells expressing MET-mutated variants M1268T and Y1248H, which exhibit constitutive kinase activity. We demonstrate that MET mutations expression is associated with significantly increased production of vascular endothelial growth factor, which is blocked by MET targeting only in cells expressing the M1268T inhibitor-sensitive but not in the Y1248H inhibitor-resistant variant. Decrease in vascular endothelial growth factor production is also associated with reduction of tyrosine phopshorylation of the vascular endothelial growth factor receptor 2 expressed on primary liver sinusoidal endothelial cells and with inhibition of vessel formation. Furthermore, MET inhibition demonstrated an efficient anti-tumor activity and considerable reduction in microvessel density only against the M1268T-derived intrahepatic tumors. Collectively, our data support the role of targeting MET-associated angiogenesis as a major biological determinant for liver tumor growth control.