17 resultados para Medical errors
Resumo:
BACKGROUND The abstraction of data from medical records is a widespread practice in epidemiological research. However, studies using this means of data collection rarely report reliability. Within the Transition after Childhood Cancer Study (TaCC) which is based on a medical record abstraction, we conducted a second independent abstraction of data with the aim to assess a) intra-rater reliability of one rater at two time points; b) the possible learning effects between these two time points compared to a gold-standard; and c) inter-rater reliability. METHOD Within the TaCC study we conducted a systematic medical record abstraction in the 9 Swiss clinics with pediatric oncology wards. In a second phase we selected a subsample of medical records in 3 clinics to conduct a second independent abstraction. We then assessed intra-rater reliability at two time points, the learning effect over time (comparing each rater at two time-points with a gold-standard) and the inter-rater reliability of a selected number of variables. We calculated percentage agreement and Cohen's kappa. FINDINGS For the assessment of the intra-rater reliability we included 154 records (80 for rater 1; 74 for rater 2). For the inter-rater reliability we could include 70 records. Intra-rater reliability was substantial to excellent (Cohen's kappa 0-6-0.8) with an observed percentage agreement of 75%-95%. In all variables learning effects were observed. Inter-rater reliability was substantial to excellent (Cohen's kappa 0.70-0.83) with high agreement ranging from 86% to 100%. CONCLUSIONS Our study showed that data abstracted from medical records are reliable. Investigating intra-rater and inter-rater reliability can give confidence to draw conclusions from the abstracted data and increase data quality by minimizing systematic errors.
Resumo:
BACKGROUND Recent reports using administrative claims data suggest the incidence of community- and hospital-onset sepsis is increasing. Whether this reflects changing epidemiology, more effective diagnostic methods, or changes in physician documentation and medical coding practices is unclear. METHODS We performed a temporal-trend study from 2008 to 2012 using administrative claims data and patient-level clinical data of adult patients admitted to Barnes-Jewish Hospital in St. Louis, Missouri. Temporal-trend and annual percent change were estimated using regression models with autoregressive integrated moving average errors. RESULTS We analyzed 62,261 inpatient admissions during the 5-year study period. 'Any SIRS' (i.e., SIRS on a single calendar day during the hospitalization) and 'multi-day SIRS' (i.e., SIRS on 3 or more calendar days), which both use patient-level data, and medical coding for sepsis (i.e., ICD-9-CM discharge diagnosis codes 995.91, 995.92, or 785.52) were present in 35.3 %, 17.3 %, and 3.3 % of admissions, respectively. The incidence of admissions coded for sepsis increased 9.7 % (95 % CI: 6.1, 13.4) per year, while the patient data-defined events of 'any SIRS' decreased by 1.8 % (95 % CI: -3.2, -0.5) and 'multi-day SIRS' did not change significantly over the study period. Clinically-defined sepsis (defined as SIRS plus bacteremia) and severe sepsis (defined as SIRS plus hypotension and bacteremia) decreased at statistically significant rates of 5.7 % (95 % CI: -9.0, -2.4) and 8.6 % (95 % CI: -4.4, -12.6) annually. All-cause mortality, SIRS mortality, and SIRS and clinically-defined sepsis case fatality did not change significantly during the study period. Sepsis mortality, based on ICD-9-CM codes, however, increased by 8.8 % (95 % CI: 1.9, 16.2) annually. CONCLUSIONS The incidence of sepsis, defined by ICD-9-CM codes, and sepsis mortality increased steadily without a concomitant increase in SIRS or clinically-defined sepsis. Our results highlight the need to develop strategies to integrate clinical patient-level data with administrative data to draw more accurate conclusions about the epidemiology of sepsis.